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Dead Reckoning: Demographic Determinants
of the Accuracy of Mortality Risk Perceptions

Jahn Karl Hakes1∗ and W. Kip Viscusi2

General patterns of bias in risk beliefs are well established in the literature, but much less is
known about how these biases vary across the population. Using a sample of almost 500 people,
the regression analysis in this article yields results consistent with the well-established pattern
that small risks are overassessed and large risks are underassessed. The accuracy of these
risk beliefs varies across demographic factors, as does the switch point at which people go
from underassessment to overassessment, which we found to be 1,500 deaths annually for the
full sample. Better educated people have more accurate risk beliefs, and there are important
differences in the risk perception by race and gender that also may be of policy interest.
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1. INTRODUCTION

Early work on biases in the public’s risk be-
liefs focused on patterns of mortality risk percep-
tions. These analyses used regression analysis of the
geometric mean of risk beliefs for different causes
of death against actual deaths to demonstrate a sys-
tematic overestimation of low probability risks and
underestimation of higher probability risks.3 More re-
cent papers, such as Viscusi, Hakes, and Carlin(1) and
Benjamin and Dougan,(2) expanded the set of regres-
sors to include lost life expectancy for different causes
of death and age group death rates, respectively. They
found that mortality risk beliefs were strongly depen-
dent on the length of life lost with different causes of
death as well as the pertinence of the risk to the re-
spondent’s age group. However, in a subsequent anal-
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ysis Benjamin et al. were unable to reject their null
hypothesis of unbiasedness in perceptions for large
magnitude mortality risks.(3) Due to the unavailabil-
ity of demographic data and small sample sizes, these
studies did not investigate the variations in mortality
risk perception patterns across demographic groups
or the extent of variation in risk perceptions among
individuals.

This article makes several advances on the litera-
ture. First, the empirical analysis uses risk perception
data on an individual basis rather than average values
for accident groups. This difference not only creates
a much greater sample size but, more importantly,
it makes possible explicit econometric adjustment to
account for systematic person-specific differences in
risk beliefs. Second, because of the focus on individual
data, it will be possible to assess how patterns of risk
overestimation and underestimation vary with demo-
graphic factors.

While there has been no multivariate analysis of
the effect of demographic characteristics on percep-
tions of mortality risks, past research has addressed
demographic variations in other types of risk percep-
tions. The most thoroughly examined demographic
influence is the effect of gender. Savage’s analysis
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of perceived risks from aviation accidents, house
fires, auto accidents, and stomach cancer indicated
that there was higher dread regarding these hazards
among women, as well as among blacks, the lesser ed-
ucated, and the young.(4) Similarly, Gustafson’s sum-
mary of the literature on fear of crime found greater
risk beliefs among women.(5)

Research on women’s environmental risk be-
liefs has yielded similar results. Davidson and
Freudenburg’s review of the environmental risk per-
ception literature found that women had higher risk
beliefs for risks of nuclear power and radioactive
wastes but did not differ significantly for other risks.(6)

Flynn et al. similarly found higher risk beliefs for
women, with white men having the lowest risk be-
liefs.(7) Women also indicated more concern about
risk of hazardous waste and global warming in the
study by Bord and O’Conner.(8) Even female scien-
tists report higher risk assessments for nuclear tech-
nologies in the study by Barke et al.(9)

Researchers have found higher risk beliefs among
women in other contexts as well. Dosman et al. found
that women perceive greater risks from food, while
better educated and younger respondents reported
lower risk beliefs.(10) Hersch found that women were
more likely to engage in protective health-related be-
haviors pertaining to smoking, seatbelt use, exercis-
ing, and preventative dental care, while black men
were least likely to take risk-reducing efforts.(11) Such
gender differences are apparent at an early age, as
girls have higher perceived risks of injury from play
than boys,(12) are more able to identify risks,(13) and
are less overly optimistic about avoiding traffic acci-
dent risks when they become young adults.(14)

Many of the studies above found race and educa-
tion effects. The role of education was also found in
Viscusi’s analysis of judges’ risk beliefs, who exhibited
smaller biases in perceptions than those reported for
the general public in the literature.(15,16)

Section 2 will describe the sample used for our
analysis. Section 3 will compare perceived mortality
risks to actual death counts to identify significant over-
and underassessment of risks, and will illustrate how
those perceptions vary for subsamples selected by ed-
ucation, gender, and race. Section 4 furthers the anal-
ysis by using multiple regression analysis to estimate
the effects upon risk perceptions of the various de-
mographic variables holding other factors constant,
and thus removing biases caused by any correlations
of demographic variables among individuals in our
sample. Section 5 uses quantile regression analysis to

Table I. Sample Characteristics

Variable Mean Standard Error

Female = 1 0.684 0.0217
Nonwhite = 1 0.095 0.0137
College = 1 0.374 0.0225
Age 44.452 0.7136
Usable responses 22.225 0.1208

Notes: N = 462. Observations deleted where (1) age, race, or
educational attainment not reported; (2) respondent refused to
estimate actual deaths; or (3) respondent gave an extreme outlier
response.

illustrate how people form perceptions differently for
risks of different magnitudes. Section 6 concludes the
article with a summary of results and a brief discussion
of the policy implications of the findings.

2. SAMPLE DESCRIPTION

Our sample is from a safety risk survey adminis-
tered for this article during the summer of 1998 to 493
adults. The sample was recruited by a marketing firm
in Phoenix, Arizona. Subjects came to a central loca-
tion to participate in the survey and were reimbursed
for their time. Each respondent reported standard de-
mographic information on age, race, gender, and ed-
ucational attainment, answered a series of questions
eliciting their opinions on hypothetical risk situations,
and completed a survey question listing 23 different
potential causes of death.4

The completion rate for the risk assessment rate
of the survey was over 90% for those who participated
in the study. As Table I indicates, the sample included
a wide range of demographic groups. However, the
sample is not representative of the entire U.S. popula-
tion, as women, for example, compromise two-thirds
of the respondents.5 The education level responses

4 The causes of death include both diseases and types of accidental
deaths, but for ease of exposition will be referred to hereafter as
“ailments.”

5 Nonresponses were deleted, as were 18 extreme outliers that
appear to have reflected respondent confusion. The overall re-
sponse rate was over 90%, with nonrespondents typically refus-
ing the entire page. These results lessen the concerns of selec-
tivity bias. The 18 estimates that were deleted indicated over
500,000,000 annual deaths from the ailment in question. These
outliers were removed to reduce the skewing effects upon the
arithmetic mean, although the effects of these outliers on the ge-
ometric means were negligible. The following analysis was tested
for sensitivity to the removed observations, and the results were
qualitatively unaffected.
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were recoded into a binary variable taking the value
of one if the respondent had completed a college de-
gree or graduate degree, and a value of zero if the re-
spondent indicated a lower level of attainment.6 Just
under 10% of the sample were members of a racial or
ethnic minority group. The modest number of racial
and ethnic minorities among the respondents, which
limits the ability to distinguish the statistical signifi-
cance of different racial categories, led us to pool the
minority groups so that the analysis will focus on av-
erage parameter effects across all minorities. We will
consequently examine results from different subsam-
ples and multivariate regression results rather than
focusing on sample means alone. The risk assessment
question was as follows: “In 1990 47,000 people in
the United States died in automobile accidents. How
many people died from the other causes of death listed
below? You are not expected to know any of these an-
swers exactly. Your best estimate will do.”7 The sur-
vey instructed respondents to put their estimates in
the blanks to the right of the ailment name.

3. PATTERNS OF RISK PERCEPTION

The first three columns of Table II compare ac-
tual fatalities from each of 23 causes of death to the
arithmetic means and geometric means of the re-
spondents’ mortality risk estimates.8 Previous studies
have focused on geometric means because that mea-
sure decreases the distorting effect of outliers, and
for comparability we too focus on geometric means.
The differences between the arithmetic and geometric
means reflect the extreme right-skewness of the per-

6 The analytical results reported below are qualitatively similar to
those obtained using an alternative coding for estimated number
of years of schooling, wherein “some high school” = 9; “high
school diploma” = 12; “some college” = 14; “college degree”
= 16; and “graduate degree” = 20, while respondents reporting
“other” were not coded and were dropped from the analysis.

7 Although the use of the 1990 statistic from the National Safety
Council is not ideal, at the time of the survey it was the most re-
cent year of data available for the entire set of risks in the survey
and we sought to match the traffic fatality risk more closely to
available risk data. It requires the respondent to consider the pos-
sibility of changes in auto fatality counts over an eight-year inter-
val. Auto fatality numbers have been relatively steady through-
out the 1990s, falling to between 41,000 and 43,000 fatalities per
year by the end of the decade. Estimates by NHTSA (2001) in-
dicate 45,000 deaths in 1990. The low coefficient of variation in
auto fatalities across the years suggests that any bias would be
minor.(22)

8 The fatality totals are drawn from Vital Statistics of the United
States for the year 1993, the most recent year for which data
were available at the time of the survey.(23)

ception distributions, which is enhanced by the lower
bound on estimates at zero.9 For each of the 23 listed
ailments, the median is quite similar to the geomet-
ric mean and as a consequence will not be reported
here.10

The results in Table II follow the well-known em-
pirical patterns that people overestimate the small
risks of death, such as botulism and fireworks, and
underestimate the larger risks, such as heart disease
and diabetes. The influence of outliers on the arith-
metic means makes the standard errors so large that
while the overestimation of low probability risks is
apparent, the arithmetic means never fall below the
actual value of fatalities for large risks.

The remaining pairs of columns in Table II
consequently focus upon geometric mean responses
for subsamples selected by demographic groups.
Columns 4 and 5 of Table II show the (geometric)
means by gender, Columns 6 and 7 report results by
education, and Columns 8 and 9 report the results by
race.

Table II designates the mean values for which the
95% confidence interval lies above the actual deaths
with an “∗,” means for which the 95% confidence in-
terval is below the number of deaths by “∗∗,” and geo-
metric means outside the subsample 95% confidence
interval by “∗∗∗.” While there are relatively few sta-
tistically significant differences in the subsample geo-
metric means for low-frequency causes of death, for
more frequent fatalities some patterns emerge. For
the most common causes of death, males underes-
timate the risk by less than do females, and college
graduates and whites report perceived death counts
closer to actual deaths.

4. MULTIPLE REGRESSION RESULTS

To determine the separate effects of gender, race,
and education upon mortality risk perceptions, we use

9 These distortions are particularly apparent for the eight most in-
frequent causes of death, which have similar geometric means,
but widely varying arithmetic means, particularly for birthing dif-
ficulties and measles. While most of the arithmetic means on the
list are between 8 and 20 times greater than the geometric mean,
these ratios for appendicitis, birthing difficulties, and measles are
42, 57, and 114, respectively.

10 The average absolute deviation between the median and the ge-
ometric mean for the ailments is 15.8%, with a median absolute
deviation of 15.3% and a maximum absolute deviation of 38.1%.
Twelve of the 23 geometric means were below the median, with
the other 11 exceeding the median. Furthermore, for each ail-
ment, the confidence interval for the geometric mean includes
the median and vice versa.
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Table II. Basic Beliefs for Full Sample

Geometric Mean of
Geometric Mean of

Full Sample
Perceived Deaths, by

Perceived Deaths, by Geometric Mean of
Perceptions

Gender
Educational Attainment Perceived Deaths,

by Race
Actual deaths Arithmetic Geometric No college College

in 1993 mean mean Men Women degree degree White Nonwhite
Cause of Death (1) (2) (3) (4) (5) (6) (7) (8) (9)

Botulism 2 13,754∗ 623∗ 668 604 680 542 636∗∗∗ 506
Measles 5 26,670 233∗ 254 225 216 261 218∗∗∗ 461
Fireworks 5 5,360∗ 229∗ 208 239 223 239 224∗∗∗ 282
Lightning 89 3,494∗ 241∗ 173∗∗∗ 280∗∗∗ 247 230 248∗∗∗ 181
Birthing difficulties 320 101,440 1766∗ 1,937 1,692 1,572 2134 1,760 1,831
Appendicitis 500 18,908 445 558 402∗∗∗ 422 483 440 488
Accidental 670 12,003∗ 1,043∗ 1,441∗∗∗ 899∗∗∗ 1,027 1,069 1,094∗∗∗ 648

electrocution
Hepatitis 677 19,578∗ 1,365∗ 1,791 1,207∗∗∗ 1,230 1,618 1,379 1,237
Accidental firearm 1,416 61,307 3,235∗ 2,419∗∗∗ 3,703∗∗∗ 3,271 3,178 3,203 3,570

discharges
Accidental drowning 3,979 23,635 2,935∗∗ 2,685 3,057 2,876 3,034 2,966 2,650
Fire and flames 4,175 45,243 3,076∗∗ 2,734 3,246 2,970 3,259 3,207∗∗∗ 2,039
Asthma 4,750 50,249∗ 3,543∗∗ 3,531 3,548 3,006∗∗∗ 4,644∗∗∗ 3,819∗∗∗ 1,725
Accidental poisoning 5,200 21,117∗ 2,504∗∗ 3,110 2,266∗∗∗ 2,468 2,563 2,537 2,206
Accidental falls 12,313 15,356 1,279∗∗ 1,180 1,327 1,044∗∗∗ 1,779∗∗∗ 1,380∗∗∗ 599∗∗∗
Stomach cancer 13,640 61,643∗ 6,441∗∗ 6,186 6,561 4,715∗∗∗ 10,607∗∗∗ 6,539 5,569
Homicide 24,614 378,780∗ 23,000 23,787 22,647 22,823 23,296 23,261 20,647
Breast cancer 45,000 142,506∗ 15,276∗∗ 14,601 15,595 10,458∗∗∗ 28,491∗∗∗ 15,875∗∗∗ 10,561
Diabetes 47,664 48,004 4,846∗∗ 5,821 4,456∗∗∗ 3,655∗∗∗ 7,670∗∗∗ 4,935 4,082
Stroke 144,088 186,727 17,466∗∗ 23,393∗∗∗ 15,320∗∗∗ 12,525∗∗∗ 30,320∗∗∗ 18,219∗∗∗ 11,691
Lung cancer 145,000 268,667 17,017∗∗ 23,506∗∗∗ 14,688∗∗∗ 11,739∗∗∗ 31,279∗∗∗ 18,203∗∗∗ 8,937
All cancers 505,322 782,048 73,514∗∗ 91,476 66,401∗∗∗ 54,439∗∗∗ 119,937∗∗∗ 75,451∗∗∗ 56,824
Heart disease 720,000 748,231 41,962∗∗ 54,950 37,115∗∗∗ 27,768∗∗∗ 82,571∗∗∗ 45,225∗∗∗ 20,881
All causes 2,148,463 7,132,862∗ 536,915∗∗ 885,538∗∗∗ 423,049∗∗∗ 355,051∗∗∗ 1,034,598∗∗∗ 544,152 471,616

∗95% confidence interval for mean lies entirely above actual number of deaths.
∗∗95% confidence interval for mean lies entirely below actual number of deaths.
∗∗∗Geometric mean for corresponding subsample is outside 95% confidence interval for this subsample.
Notes: N = 10,268. Observations deleted where (1) age, race, or educational attainment not reported; (2) respondent refused to estimate
actual deaths; or (3) respondent gave an extreme outlier response.

multiple regression analysis. The dependent variable
for the regression in Table III is the natural logarithm
of the respondent’s perceived deaths. The natural log-
arithm transforms the number of perceived deaths
into a distribution that more closely approximates the
normal and allows for interpretation of unit changes in
explanatory variables in terms of a percentage change
in perceived deaths. This functional form in Model 1
of Table III permits comparison to earlier results such
as those reported in Lichtenstein et al.(17)

There are, however, two important differences.
First, we use individual data for each respondent’s
assessment for each risk category, leading to a sam-
ple size of 10,268 rather than 23 if we had relied on
geometric means. Second, the reported regressions
in Model 1 and Model 2 in Table III each include

recognition of fixed person-specific effects. Thus, the
constant term in the regression is in effect permit-
ted to have a different value for every individual in
the sample so that differences in the average level of
perceived deaths across respondents are taken into
account.

The estimated relationship for Model 1 in
Table III has a positive intercept, a positive slope in
the relevant range of actual deaths, and is concave
upward. By comparison, Lichtenstein et al. used the
Base 10 logarithm rather than the natural logarithm,
and estimated curves through the logged geometric
means (log GM) of estimated deaths as a function of
the logged true frequency (log TF) and logged true
frequency squared ((log TF)2) of each cause.(17) For
respondents who had their perceptions “anchored”
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Table III. Risk Perception Regressions for Full Sample

(1) Fixed Effects (2) OLS (3) OLS (4) OLS
Dependent ln(perceived deaths ln(perceived deaths ln(perceived deaths ln(perceived deaths
Variable in 1993) in 1993) in 1993) in 1993)

ln(actual deaths in ’93) −0.024 −0.032∗∗ −0.032∗∗ −0.176∗∗
(0.017) (0.016) (0.016) (0.070)

ln(actual deaths in ’93)2 0.033∗∗∗ 0.033∗∗∗ 0.033∗∗∗ 0.033∗∗∗
(0.001) (0.001) (0.001) (0.001)

Age − − 0.041 −0.018
(0.029) (0.040)

Age2 − − −3.78 × 10−4 3.00 × 10−4

(3.08 × 10−4) (4.26 × 10−4)
Female = 1 − − −0.116 0.116

(0.162) (0.223)
College = 1 − − 0.332∗∗ −0.315

(0.151) (0.219)
Nonwhite = 1 − − −0.122 0.270

(0.304) (0.362)
College × ln(deaths93) − – – 0.078∗∗∗

(0.018)
Female × ln(deaths93) – – – −0.028

(0.019)
Nonwhite × ln(deaths93) – – – −0.047∗

(0.028)
Age × ln(deaths93) – – – 0.007∗∗

(0.003)
Age2 × ln(deaths93) – – – −8.21 × 10−5∗∗

(2.76 × 10−5)
Constant 5.722∗∗∗ 5.766∗∗∗ 4.714∗∗∗ 5.900∗∗∗

(0.096) (0.100) (0.611) (0.837)
Observations 10268 10268 10268 10268
R2 0.38 0.38 0.38 0.39

Notes: Standard errors in parentheses. Model 1 reports clustered std. errors. Models 2, 3, and 4 report clustered std. errors that are also
robust with regard to heteroskedasticity; ∗p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.
Crossover points (in “actual deaths in 1993”)

Model 1: crossover = 1495; Model 2: crossover = 1457;
Model 3: crossover = 1448.

Males: 1676; Females: 1357
College: 2122; No college: 1156
White: 1479; Nonwhite: 1188
All errors approximately equal.

Model 4: crossover = 1268.
Males: 1405; Females: 1208
College: 1703; No college: 1089
White: 1282; Nonwhite: 1151
Males had lower error than females at 95% level. Other pairs approximately equal.

by motor vehicle accident fatalities, their model esti-
mated that log GM = 2.27 + 0.03 log TF + 0.07 (log
TF)2. They did not report estimated standard errors.11

11 A regression with each case representing the geometric mean
number of perceived deaths for each ailment, which replicates
the Lichtenstein et al.(17) analysis, resulted in the estimated
equation ln(perceived) = 5.785∗∗∗ −0.040 ln(actual deaths)
+0.034∗∗∗(ln(actual deaths))2, with R2 = 0.897.

If people had accurate risk beliefs, the inter-
cept in Model 1 of Table III would be zero and the
slope coefficients for ln(actual deaths) and ln(actual
deaths)2 would be one and zero, respectively, as
a 1% difference in actual deaths would result in
a 1% difference in perceived deaths. In Model 1,
however, we see a positive and significant intercept
of 5.722, so that at risk levels of one death annu-
ally people perceive 305 deaths for the illness. The
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Fig. 1. Perceived mortality risks, by educational attainment (logged scale).

parameter estimate for ln(actual deaths) is insignif-
icant, but the parameter estimate for the ln(actual
deaths)2 quadratic term is positive and significant.
As actual deaths increase, perceived deaths increase
at an increasing rate.12 The slope coefficient be-
low remains the 1.0 value in the perfect informa-
tion case since ∂(ln(perceived))

∂(ln(actual)) = 2β2(ln(actual)) + β1,
yielding a point estimate for the partial derivative
ranges from 0.022 to 0.938 as the ln(actual deaths)
increases. The slope is 0.521 at the mean, so that mor-
tality risk perceptions at this level incorporate only
about half the information from differences in actual
deaths.

Model 2 in Table III repeats the estimation with-
out fixed effects using ordinary least squares (OLS)
regression with standard errors that are both robust
and clustered by individual. Robust estimation of
standard errors is based on work by Huber (1967) and
White (1980), and here it is used to correct for the
effects of heteroskedasticity between perceived and
actual deaths, while our use of clustering techniques
allows us to relax the assumption of independence
of residuals for observations from the same individ-

12 It should be noted that the upward concavity is not due to ei-
ther catastrophic risk or dread risk. The causes of death with the
highest fatality counts in our list are typically chronic diseases,
and are similar to the diseases with lower fatality counts in that
mortalities from these causes do not tend to “cluster,” as a dis-
ease epidemic might cause, nor are the deaths from these causes
particularly sudden or dramatically violent.

ual.(18,19)13 Model 2 yields very similar parameter es-
timates, except now both of the ln(actual death) vari-
ables are significant. Systematic person-specific dif-
ferences in risk belief consequently account for the
significant influence of the linear risk terms.

Fig. 1 illustrates the overestimation of low prob-
ability risks and underestimation of high probability
risks as seen in the classic mortality risk perception
literature. The concavity of the estimated regression
curve is also apparent, which indicates that the re-
sponsiveness of risk perceptions to changes in actual
risk increases as the level of actual risk increases. The
curvature means that larger risks are perceived more
accurately than are small risks. This pattern is consis-
tent with previous empirical findings, and is consistent
with models of rational behavior when information
gathering is costly.

Another similarity to the previous literature in
which automobile accident fatalities are used as an
anchor point for mortality risks is that the level of
risk at which patterns of overestimation switch to un-
derestimation is at approximately 1,500 annual deaths
for both Models 1 and 2.14 For death risks from which

13 The clustering technique is described in Stata Corp.(24)

14 Due to the imperfect fit of the regression, however (R2 = 0.38),
the confidence interval for this crossover point is quite large. For
Model 1 in Table III, for example, the 95% confidence interval for
the crossover point is (710, 4320). The crossover point would be
expected to vary if a different anchor than automobile accidents
was used.
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fewer than 1,500 people die annually in the United
States there is a tendency to overestimate the mor-
tality risk. The subsample means reported in Table II
do not yield a clear pattern of significant differences
in the magnitude of overestimation of small risks, but
differences in underestimation of causes of death re-
sulting in more than 1,500 annual fatalities are more
frequent. Using heart disease fatalities as an example,
the actual number of deaths in 1993 was 720,000. The
geometric mean of perceived heart disease deaths is
41,962, and the confidence interval lies entirely be-
low the true level of risk. But the geometric mean
for college educated individuals is 82,571, an estimate
three times higher than for nongraduates (27,768).
Similarly, males perceive higher levels of heart dis-
ease fatalities than do women (54,950–37,115), and
whites’ perceptions of heart disease fatalities are
higher than those for nonwhites (45,225–20,881). For
each paired subsample, there is at least one instance
where the pairs have significantly different mortality
risk perceptions.

The last two regression models shown in Table III
disentangle these demographic influences. The vari-
ables used are the age of the respondent in years, the
square of the respondent’s age, and dummy variables
for race, sex, and college completion. The square of
the respondent’s age was included because acquisition
of additional information about mortality risks might
not be linear in age, as one may receive more infor-
mation as the mortality rate of one’s own birth cohort
increases in middle age. Empirically, the qualitative
results vary somewhat with various combinations of
these two variables and their cross-products with ac-
tual deaths.

Model 3 includes three demographic group indi-
cator variables so as to identify differential intercepts.
For instance, the coefficient of 0.332 for the college
graduate indicator variable in Model 3 means that
for a given number of actual deaths, college educated
respondents, on average, perceive 33.2% more fatal-
ities from a given cause of death than do noncollege
graduate respondents of the same race and gender.
The coefficients of the other indicator variables reveal
that there are no statistically significant differences in
mortality risk perceptions by age, race, or gender.

But as we know from above, a higher perceived
number of deaths may represent either more accu-
rate risk perceptions (as with larger risks), or less ac-
curate risk perceptions (as with small risks). To al-
low a better understanding of whether demographic
factors correlate with more or less accurate percep-
tions, Model 4 also includes not only the differential

intercept terms but also interactions of each demo-
graphic factor with actual deaths. These latter terms
identify differential slopes in the relationship between
perceived deaths and actual deaths. With this further
refinement, we see, for instance, that while the –0.315
difference in the intercept coefficient for college grad-
uates and noncollege graduates is statistically insignif-
icant, for each 1% increase in actual deaths (while
moving from one cause of death to another), the num-
ber of additional deaths perceived by college gradu-
ates increases by 7.8% more than does the number
of additional deaths perceived by noncollege gradu-
ates. From the relatively steeper slope coefficient, we
learn that the mortality risk perceptions of college
graduates are more elastic than the risk perceptions
of noncollege graduates. That is, college graduates
are more responsive to changes in actual deaths and
closer to the ideal of 1.0 that indicates complete under-
standing of the differential threats of small and large
risks.

To put this in perspective, consider the perceived
number of deaths from breast cancer (where ln(actual
deaths) is about 10.7). There is no differential in-
tercept shift for college graduates as opposed to
noncollege graduates. But due to the 0.078 differ-
ential slope coefficient on the college ∗ ln(actual
deaths) interaction term, college graduates, other
things equal, will on average perceive 83.5% more
fatalities than will noncollege graduates from actual
risks that are the magnitude of breast cancer. Fig. 1
illustrates the differences by education group, and
shows that they are most apparent for very large
risks.

The largely insignificant differential intercept es-
timates in Model 3 of Table III might suggest that
there are not significant differences in the overall level
of mortality risk perceptions by demographic group.
But adding flexibility to the functional form through
inclusion of the differential slope terms in Model 4 of
Table III yields several interesting results. While the
differential intercept terms are not statistically sig-
nificant, four of the five differential slope terms are
significant. While the slope for males does not differ
significantly from that for females, the negative co-
efficient on the (nonwhite ∗ ln(actual deaths)) inter-
action variable indicates that at the 90% confidence
level, the mortality risk perceptions of nonwhites are
significantly less responsive to actual risks than are
those of white graduates.

The effects of age upon perceptions are more
difficult to interpret, as there are four parame-
ter estimates to combine. Although mortality risk
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perceptions for infrequent causes of death do not vary
significantly by age, as indicated by the insignificant
coefficients on age and age2 in Model 4 of Table III,
other things equal, the responsiveness of individuals
to actual deaths increases with age, peaking between
the ages of 50 and 60. That is, middle-aged individuals
have a better understanding of differences in levels
of actual risk. The overall relationship between age,
actual deaths, and perceived deaths is similar to the
effects of education, and is consistent with the concept
of learning from experience as one ages, with dimin-
ishing returns to additional experience. Eventually,
the returns to additional experience become nega-
tive, either because of a loss in cognitive ability or
because the differential character of risks faced by
the elderly is influential. It is also possible that se-
nior citizens are more likely to underestimate the
current population of the United States, and conse-
quently give overly low estimated population death
counts.

To compare the accuracy of perceptions for
each demographic group, the estimated equations in
Table III were fitted at each of the 23 levels of
ln(actual deaths) for each demographic group us-
ing the conditional mean values of the other right-
hand side variables. This allows us to determine the
crossover point and residual squared error for each
group. The crossover points for each group appear
below Table III. The only statistically significant dif-
ference in errors was the partition by gender, for
which the crossover point for males is at a higher
level of deaths than for females. The fitted regres-
sion line for the males, taking all 23 causes of death
into consideration, lies significantly closer to the 45◦

line ideal than does the fitted regression line for
females.

While the interaction terms between the de-
mographic variables and actual deaths are informa-
tive, the role of education and other variables may
vary across different subsamples. For example, ed-
ucation may be a more important component of
mortality risk perception formation for females than
it is for males. To fully explore these interactions
with cross-product terms for every combination of
demographic variables would result in a regression
model with coefficients that would be very difficult
to interpret. To observe the most important of these
interactions while preserving simplicity of model-
ing, the subsequent subsections explore the results
from separate regressions for different demographic
groups rather than relying on more limited interaction
terms.

4.1. Risk Perceptions by Education Group

Table IV presents regression results for respon-
dents without college education and those with col-
lege education. Among those without college educa-
tions, females and nonwhites have significantly lower
responsiveness to actual deaths than do similarly ed-
ucated males and whites, respectively. Age does not
significantly affect the perceptions of college nongrad-
uates. Looking jointly at the parameters on ln(actual
deaths) and ln(actual deaths)2—the combined net ef-
fect of which is dominated by the quadratic term—the
responsiveness to actual deaths is lower than for their
college educated counterparts.

The subsample of college graduates yields no sig-
nificant race or gender differences in perceptions.
Instead, apart from actual deaths, the only signif-
icant determinant of perceived deaths is age, sug-
gesting that education alleviates the differences in
risk perceptions that otherwise exist between men
and women, and between whites and nonwhites. The
four parameters related to age combine to indicate
positive, but diminishing, returns to experience, with
those returns concentrated on more frequent causes
of death. These latter results match those that were
found in Table III and suggest that it is the subsam-
ple of college educated people that is driving those
results.

Our F-test for determining whether it is appropri-
ate to pool the subsamples of college graduates and
college nongraduates resulted in a test statistic of 4.56,
suggesting that it is not appropriate to pool the sam-
ple. College graduates exhibit greater responsiveness
to actual mortality risks and are characterized by a re-
gression equation that is more precise, as is reflected
in the much higher R2 statistic for the college degree
holders in Table IV.

4.2. Risk Perceptions by Gender

As was seen in Columns (4) and (5) of Table II,
males tended to estimate more annual fatalities than
females for the more frequent causes of death, while
results are mixed for less frequent causes of death.
Contrary to the environmental risk perception litera-
ture, as discussed in Davidson and Freudenburg, there
do not seem to be systematic differences in mortal-
ity risk perception based upon the type of risk (ac-
cident vs. disease).(6) What evidence exists to sup-
port their hypothesis in our data is limited to frequent
causes of death, so that the differences might be based
on risk magnitude. The deviations between male and
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Table IV. Risk Perception Regressions,
by Educational Attainment

No College Degree College Degree
ln(perceived deaths in 1993) ln(perceived deaths in 1993)

ln(actual deaths in ’93) −0.069 −0.356
(0.082) (0.148)∗∗

ln(actual deaths in ’93)2 0.030 0.038
(0.001)∗∗∗ (0.002)∗∗∗

Age 0.018 −0.136
(0.048) (0.071)∗

Age2 −0.92 × 10−4 15.52 × 10−4

(5.06 × 10−4) (7.65 × 10−4)∗∗
Age × ln(deaths93) 0.005 0.014

(0.004) (0.007)∗∗
Age2 × ln(deaths93) −6.24 × 10−5 −15.13 × 10−5

(3.82 × 10−5) (7.57 × 10−5)∗∗
Female = 1 0.225 −0.022

(0.319) (0.311)
Female × ln(deaths93) −0.058 0.011

(0.024)∗∗ (0.029)
Nonwhite = 1 0.320 0.241

(0.478) (0.511)
Nonwhite × ln(deaths93) −0.060 −0.029

(0.036)∗ (0.043)
Constant 4.965 8.434

(0.995)∗∗∗ (1.600)∗∗∗
Observations 6368 3900
R2 0.327 0.492

Notes: Standard errors in parentheses are clustered, and are also robust with regard to
heteroskedasticity.
∗p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.
F-statistic for test of βno college = βcollege = 4.56.
Crossover points: no college = 1053; college = 1710.
Error ratio: 1.57 (no college higher), significant at 99% level.
Crossovers do not necessarily correspond with errors, as slopes vary as well as intercepts.

female fatality estimates are not strongly correlated
with gender-specific death rates.15

Table V presents separate regression results for
males and females. The significantly larger constant
term and the lower magnitudes of the coefficients
for ln(actual deaths) and ln(actual deaths)2 for fe-
males are consistent with the positive differential in-
tercept coefficient and negative differential slope co-
efficient for the female indicator variable in Model
4 of Table III.16 The beneficial influence of educa-
tion upon the accuracy of mortality risk perceptions is
much greater for females than for males. This finding
corresponds to the result in Table IV that male-female

15 A separate exploration of the Benjamin and Dougan hypoth-
esis regarding the importance of gender-specific death rates in
affecting risk beliefs was not borne out in our data.(2)

16 Note, however, that the coefficients in Model 4 of Table III were
not statistically significant.

differences in risk perceptions by nongraduates disap-
pear for college graduates.

Females also increase their fatality estimates for
frequent causes of death as they age, with the addi-
tional information on these frequent causes of death
making their estimates more accurate, albeit with di-
minishing returns. The indicator variables for race
show that the differences in perceptions between
white and nonwhite males is predominantly a slope
effect, with nonwhites less responsive to differences
in the actual number of deaths. As above, the impli-
cation of this finding is that white males have a better
appreciation of the differences in levels of risk than
nonwhite males. By contrast, nonwhite females offer
estimates of fatalities that are not significantly differ-
ent from those of white females. As with educational
attainment, the F-test of pooling the male and female
subsamples rejects the null that the vectors of slope
parameters are the same for the two subsamples.
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Table V. Risk Perception Regressions,
by Sex

(1) Males (2) Females
ln(perceived deaths in 1993) ln(perceived deaths in 1993)

ln(actual deaths in ’93) −0.222 −0.197
(0.131)∗ (0.081)∗∗

ln(actual deaths in ’93)2 0.038 0.031
(0.002)∗∗∗ (0.001)∗∗∗

Age 0.050 −0.051
(0.071) (0.049)

Age2 −3.55 × 10−4 6.21 × 10−4

(7.50 × 10−4) (5.21 × 10−4)
Age × ln(deaths93) 0.007 0.008

(0.006) (0.004)∗∗
Age2 × ln(deaths93) −8.72 × 10−5 −8.23 × 10−5

(6.60 × 10−5) (3.99 × 10−5)∗∗∗
College = 1 −0.288 −0.399

(0.389) (0.269)
College × ln(deaths93) 0.030 0.103

(0.031) (0.021)∗∗∗
Nonwhite = 1 −0.027 0.459

(0.619) (0.442)
Nonwhite × ln(deaths93) −0.081 −0.028

(0.047)∗ (0.033)
Constant 4.595 6.741

(1.430)∗∗∗ (1.045)∗∗∗
Observations 3215 7053
R2 0.412 0.384

Notes: Standard errors in parentheses are clustered, and are also robust with regard to
heteroskedasticity.
∗p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.
F-statistic for test of βmale = βfemale = 9.23.
Crossover points (in “actual deaths in 1993”): males = 1113; females = 2030.
Error ratio: 1.07 (males higher), not significant.

4.3. Risk Perceptions by Race

Table VI repeats the comparison of subsamples,
this time differentiating between whites and non-
whites, which include several nonwhite racial groups
whose effect is averaged across that subsample. The
results above for the geometric means for individual
ailments in Table II indicated that wherever a sig-
nificant difference in means exists, the whites have
the higher estimate, with exceptions for measles and
fireworks.

Comparison of the parameter estimates in
Table VI for the ln(actual deaths) and ln(actual
deaths)2 variables for the two subsamples is consis-
tent with the results found in Table III that the esti-
mates of whites are more responsive to actual risk.
Among whites, as above in Table III, college grad-
uates are more responsive to actual deaths than are
nongraduates, males are more responsive to actual
deaths than are females, and the responsiveness to ac-

tual deaths increases with age until about age 45, and
then diminishes until the point where the mortality
risk perceptions of 70 year olds are similar in respon-
siveness to actual risk as those of otherwise similar
20 year olds. By contrast, the subsample of nonwhites
shows no significant differences in mortality risk per-
ceptions by gender, and the regression results suggest
that perceived risks increase for all causes of death
as nonwhites age, with the effect not related to the
magnitude of the actual risk. The regression upon the
subsample of nonwhites does echo the findings for
whites in that college graduates are more responsive
to actual risk. The goodness of fit for the two models
indicates that the risk perceptions of whites are more
completely explained by the model than are the per-
ceptions of nonwhites, but the pooling of ethnicities
under the nonwhite banner may have contributed to
this difference. The F-test to determine whether it is
valid to separately estimate parameters for whites and
nonwhites yields a very significant F-statistic of 11.75.
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Table VI. Risk Perception Regressions,
by Race

Whites Nonwhites
ln(perceived deaths in 1993) ln(perceived deaths in 1993)

ln(actual deaths in 1993) −0.203 −0.253
(0.075)∗∗∗ (0.256)

ln(actual deaths in 1993)2 0.033 0.036
(0.001)∗∗∗ (0.004)∗∗∗

Age −0.002 −0.321
(0.041) (0.194)

Age2 1.37 × 10−4 0.0042
(4.43 × 10−4) (0.0025)∗

Age × ln(deaths93) 0.0087 0.0087
(0.0034)∗∗ (0.0132)

Age2 × ln(deaths93) −0.96 × 10−4 −1.52 × 10−4

(0.36 × 10−4)∗∗∗ (1.56 × 10−4)
College = 1 −0.340 −0.395

(0.231) (0.678)
College × ln(deaths93) 0.074 0.146

(0.019)∗∗∗ (0.056)∗∗
Female = 1 0.030 0.939

(0.236) (0.655)
Female × ln(deaths93) −0.034 −0.005

(0.020)∗ (0.052)
Constant 5.632 10.950

(0.882)∗∗∗ (3.424)∗∗∗
Observations 9312 956
R2 0.402 0.332

Notes: Standard errors in parentheses are clustered, and are also robust with regard to
heteroskedasticity.
∗p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.
F-statistic for test of (βwhite = βnonwhite) = 11.75.
Crossover points (in “actual deaths in 1993”): whites = 1575; nonwhites = 1014.
Error ratio: 1.27 (nonwhites higher), not significant.

5. DIFFERENCES BY RISK LEVEL:
QUANTILE REGRESSION RESULTS

How are risk perceptions at different magnitudes
of actual risk determined? The factors that drive per-
ception formation for low-magnitude mortality risks
may not be the same as for more common causes of
death. The manner in which demographic variables
affect high-frequency and low-frequency risk beliefs
differently can be explored using quantile regression
analysis. Whereas ordinary least squares regression
minimizes the sum of squared residuals, quantile re-
gression minimizes the sum of absolute residuals, sub-
ject to the regression line resulting in q% of the residu-
als being negative. For the special case where q=50%,
the regression line will intersect the data at the me-
dian. The econometric implication of this technique
is that a low quantile regression, such as at the 10th
percentile (q(10)), which is forced to produce 90%
positive residuals, explains what is happening among

the responses indicating lowest perceived risk for a
given level of actual risk.

Table VII uses the functional form from Model 3
of Table III and applies it to the median (50th quan-
tile) of the distribution of perceived deaths, as well
as the 10th, 25th, 75th, and 90th quantiles. Consider
the coefficients for college graduates at the q(10) and
q(90) levels as examples of parameter estimate inter-
pretation. The q(10) coefficient for college indicates
that the 10th percentile of estimates made by college
graduates are 89.4% higher than those at the 10th
percentile for nongraduates. Given that the intercept
(1.860) is much lower than the intercepts for the other
quantiles, and the strong correlation between levels
of actual and perceived deaths, the overestimation
by college graduates does not constitute a major er-
ror in absolute number of perceived fatalities. Taking
lightning strikes as an example, the q(10) fitted value
for male white noncollege graduates is about 18 per-
ceived annual deaths. While the fitted value for male
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Table VII. Quantile Regression Analysis

q(10) q(25) q(50) q(75) q(90)

ln(actual deaths) 0.035 −0.028 −0.037 −0.003 −0.096
(0.039) (0.021) (0.024) (0.024) (0.036)∗∗∗

ln(actual deaths)2 0.031 0.036 0.033 0.031 0.036
(0.003)∗∗∗ (0.001)∗∗∗ (0.002)∗∗∗ (0.002)∗∗∗ (0.002)∗∗∗

Female = 1 0.001 −0.066 −0.101 −0.152 −0.251
(0.092) (0.048) (0.054)∗ (0.053)∗∗∗ (0.079)∗∗∗

College = 1 0.894 0.612 0.263 0.083 −0.011
(0.091)∗∗∗ (0.046)∗∗∗ (0.052)∗∗∗ (0.051) (0.077)

Nonwhite = 1 −0.669 −0.329 0.033 0.122 0.127
(0.152)∗∗∗ (0.078)∗∗∗ (0.086) (0.083) (0.122)

Age −0.0005 0.022 0.037 0.055 0.070
(0.0171) (0.009)∗∗ (0.010)∗∗∗ (0.010)∗∗∗ (0.015)∗∗∗

Age2 1.62 ×10−4 −1.62 × 10−4 −3.53 × 10−4 −5.61 × 10−4 −7.16 × 10−4

(1.84 × 10−4) (0.97 × 10−4)∗ (1.09 × 10−4)∗∗∗ (1.06 × 10−4)∗∗∗ (1.58 × 10−4)∗∗∗
Constant 1.860 3.326 4.971 6.015 7.488

(0.395)∗∗∗ (0.205)∗∗∗ (0.228)∗∗∗ (0.222)∗∗∗ (0.337)∗∗∗
PseudoR2 0.180 0.210 0.235 0.239 0.246

Note: Standard errors in parentheses are robust with regard to heteroskedasticity.
∗p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

white college graduates is relatively much higher, at
44 perceived annual deaths, the absolute difference
of 26 perceived annual deaths is of little practical
importance.

In the q(50) model, however, where the most rel-
evant part of the regression line—for the causes of
death near the middle rows of Table II—lies under-
neath the 45◦ line depicted in Fig. 1, the higher risk
assessments by college graduates represent risk per-
ceptions that are on average more accurate by sev-
eral hundred annual deaths. In the q(50) regression,
for male white noncollege graduates, the expected
number of perceived fatalities from accidental poi-
soning (5,200 actual deaths) is 1,394. For male white
college graduates, the estimate is 26.3% higher, result-
ing in an average perception of 1,813 annual deaths.
While the coefficient is smaller, the practical impor-
tance of the coefficient upon the absolute number of
perceived deaths is larger than in the q(10) regression.
The insignificant coefficient for college graduates in
the q(75) and q(90) regressions indicates that among
the highest stated perceived numbers of deaths, the
responses of college graduates are statistically similar
to those of other groups.

Other demographic factors also play different
roles depending on the level of the risk. Nonwhites
are more prone to responding with a lower number
of perceived deaths for a given cause at q(10) and
q(25) than whites. Females have lower risk beliefs at

q(50) and above, indicating that they are more prone
to underestimating very large risks. The combined ef-
fects of the age terms indicates that numbers of per-
ceived deaths increase at a decreasing rate as individ-
uals age, such that older people are more likely to give
the highest estimates of fatalities at a given level of ac-
tual deaths. The overall slope of the regression line (as
described by ln(actual deaths) and ln(actual deaths)2)
is remarkably constant over the range of ln(perceived
deaths).

The quantile regressions explain more of the vari-
ation in perceived deaths, as measured by pseudo-
R2, at the upper quantiles than they do for the lower
quantiles, indicating that there is more randomness
involved in the responses indicating the lowest num-
bers of perceived deaths.17 People are less well in-
formed about small risks since the information avail-
able about such risks is more limited. At the median
level of ln(perceived deaths) (at 8.51, or about 5,000
perceived deaths), we see that college graduates and
older respondents are making higher estimates than
nongraduates and the young, and that females are
more likely to give a lower response than are males.

17 The pseudo-R2 statistic indicates the fraction of variation in the
dependent variable explained by the model. The formula is 1 –
(sum of weighted deviations about estimated quantile)/(sum of
weighted deviations about raw quantile), based upon the likeli-
hood for a double exponential distribution.(24)
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6. CONCLUSION

The general result that people overestimate small
risks and underestimate large risks holds true for all
major demographic groups. To the extent that risk
perception biases establish a rationale for policy in-
tervention, the case for such policies is broadly based.

Different groups in society do differ in their per-
formance, which suggests that differential targeting
of interventions such as risk information policies may
be warranted. The better educated have more accu-
rate risk beliefs and also are much more adept at in-
corporating age-related experiences in their risk as-
sessments. Minorities tend to be less well informed
about risk and are less responsive to the age-related
experiences than whites. Females are more influenced
by education and age-related information about risks
than are males, and have lower risk beliefs than males
for the large risks.

People exhibit more systematic thinking about
large risks than small risks, which is what one might ex-
pect given the greater information that we have about
frequently occurring risks. This more systematic per-
formance should not, however, be a rationale for pol-
icy inaction because the potential health losses from
underestimating large risks may be severe.

One theory for the high degree of observed risk
aversion in public policy decisions is based upon pub-
lic overestimation of small risks and underestimation
of large risks, as argued in Viscusi.(20) According to
this theory, the public’s difficulty in distinguishing
between differing magnitudes of risks leads to sim-
ilar amounts of spending for reducing each risk. As
a result, the resulting regulatory costs per statistical
life saved are much higher for low probability risks,
whereas the greatest gains in lifesaving will be from
reducing very large risks.

Improved policy treatment of risks, assisted par-
ticularly by improved communication of risks, holds
the potential to increase the cost effectiveness of pub-
lic policy.18 Our findings that improved education and
age (life experience) both correlate with a greater un-
derstanding of risk differentials, and have interaction
effects indicating that they are complementary, sug-
gests that a more highly educated population may be
better able to receive quantitative risk communica-
tion efforts. Given the lower accuracy of quantitative
risk perceptions here for some demographic segments
of the population, such as nonwhites and the lesser ed-

18 See Fischhoff et al. and Kunreuther et al. for information on how
policies are constrained by public perceptions, and on the com-
munication of low-level risks, respectively.(25,26)

ucated, it seems possible that these groups may need
additional attention in the risk communication effort
to ensure that they are adequately informed.
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