
IDL Version 7.1
May 2009 Edition
Copyright © ITT Visual Information Solutions
All Rights Reserved

IDL DataMiner
Guide

0509IDL71DM

Restricted Rights Notice
The IDL®, IDL Advanced Math and Stats™, ENVI®, and ENVI Zoom™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, duplication, and disclosure are subject to
the restrictions stated in the license agreement. ITT Visual Information Solutions reserves the right to make changes to this document
at any time and without notice.

Limitation of Warranty
ITT Visual Information Solutions makes no warranties, either express or implied, as to any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantability, or fitness for any particular purpose.

ITT Visual Information Solutions shall not be liable for any direct, consequential, or other damages suffered by the Licensee or any
others resulting from use of the software packages or their documentation.

Permission to Reproduce this Manual
If you are a licensed user of these products, ITT Visual Information Solutions grants you a limited, nontransferable license to
reproduce this particular document provided such copies are for your use only and are not sold or distributed to third parties. All such
copies must contain the title page and this notice page in their entirety.

Export Control Information
The software and associated documentation are subject to U.S. export controls including the United States Export Administration
Regulations. The recipient is responsible for ensuring compliance with all applicable U.S. export control laws and regulations. These
laws include restrictions on destinations, end users, and end use.

Acknowledgments
ENVI® and IDL® are registered trademarks of ITT Corporation, registered in the United States Patent and Trademark Office. ION™, ION Script™,
ION Java™, and ENVI Zoom™ are trademarks of ITT Visual Information Solutions.

ESRI®, ArcGIS®, ArcView®, and ArcInfo® are registered trademarks of ESRI.

Portions of this work are Copyright © 2008 ESRI. All rights reserved.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities. Copyright © 1988-2001, The Board of Trustees of the University of Illinois. All
rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities. Copyright © 1998-2002, by the Board of Trustees of the University of
Illinois. All rights reserved.

CDF Library. Copyright © 2002, National Space Science Data Center, NASA/Goddard Space Flight Center.

NetCDF Library. Copyright © 1993-1999, University Corporation for Atmospheric Research/Unidata.

HDF EOS Library. Copyright © 1996, Hughes and Applied Research Corporation.

SMACC. Copyright © 2000-2004, Spectral Sciences, Inc. and ITT Visual Information Solutions. All rights reserved.

This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by DataDirect Technologies, © 1991-2003.

BandMax®. Copyright © 2003, The Galileo Group Inc.

Portions of this computer program are copyright © 1995-1999, LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent No. 5,710,835.
Foreign Patents Pending.

Portions of this software were developed using Unisearch’s Kakadu software, for which ITT has a commercial license. Kakadu Software. Copyright ©
2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd, Australia.

This product includes software developed by the Apache Software Foundation (www.apache.org/).

MODTRAN is licensed from the United States of America under U.S. Patent No. 5,315,513 and U.S. Patent No. 5,884,226.

QUAC and FLAASH are licensed from Spectral Sciences, Inc. under U.S. Patent No. 6,909,815 and U.S. Patent No. 7,046,859 B2.

Portions of this software are copyrighted by Merge Technologies Incorporated.

Support Vector Machine (SVM) is based on the LIBSVM library written by Chih-Chung Chang and Chih-Jen Lin (www.csie.ntu.edu.tw/~cjlin/libsvm),
adapted by ITT Visual Information Solutions for remote sensing image supervised classification purposes.

IDL Wavelet Toolkit Copyright © 2002, Christopher Torrence.

IMSL is a trademark of Visual Numerics, Inc. Copyright © 1970-2006 by Visual Numerics, Inc. All Rights Reserved.

Other trademarks and registered trademarks are the property of the respective trademark holders.

http://www.apache.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Contents
Chapter 1
DataMiner Overview .. 7
Introduction to IDL DataMiner and ODBC .. 8

What Is IDL DataMiner? .. 8
What Is ODBC? .. 8
About the DataMiner ODBC Drivers ... 9

About This Volume ... 12
Audience ... 12
Organization .. 12
Terminology .. 13
Where to Find Additional Information ... 13

ODBC Conformance Levels ... 14
API Conformance Levels .. 14
SQL Conformance Levels .. 14

Network Access Requirements ... 16
DataMiner Guide 3

4

Installation on UNIX Systems ... 17

Chapter 2
Using the IDL DataMiner .. 19
Components ... 20
Using the DB_EXISTS Function ... 21
Creating a Database Object .. 22

Finding Available Databases ... 22
Finding a Specific Database .. 22

Connecting to a Database ... 23
Finding Tables ... 26

Finding Available Tables .. 26
Finding Specific Tables ... 26

Connecting to a Table .. 27
Working with Table Data ... 28

Moving Through a Recordset .. 28
Example ... 30
ODBC SQL Syntax Notes ... 32

Reserved ODBC SQL Words .. 32
Date, Time, and Timestamp Data .. 32
Scalar Functions .. 32
LIKE Predicate Escape Characters .. 33
Outer Joins ... 33
Procedure Calls .. 34

Data Type Mappings .. 35
Error Messages ... 36

Chapter 3
IDL DataMiner API .. 39
How to Use This Chapter ... 40

Creating Database Objects .. 42
Destroying Database Objects .. 42

DIALOG_DBCONNECT .. 43
DB_EXISTS .. 45
IDLdbDatabase .. 46

IDLdbDatabase Properties .. 48
IDLdbDatabase::Cleanup .. 53
Contents DataMiner Guide

5

IDLdbDatabase::Connect .. 54
IDLdbDatabase::ExecuteSQL .. 56
IDLdbDatabase::GetDatasources .. 58
IDLdbDatabase::GetProperty ... 59
IDLdbDatabase::GetTables .. 60
IDLdbDatabase::Init ... 61
IDLdbDatabase::SetProperty .. 63

IDLdbRecordset .. 64
IDLdbRecordset Properties ... 67
IDLdbRecordset::AddRecord ... 71
IDLdbRecordset::Cleanup .. 72
IDLdbRecordset::CurrentRecord .. 73
IDLdbRecordset::DeleteRecord .. 74
IDLdbRecordset::GetField .. 75
IDLdbRecordset::GetProperty .. 76
IDLdbRecordset::GetRecord .. 77
IDLdbRecordset::Init .. 79
IDLdbRecordset::MoveCursor ... 81
IDLdbRecordset::NFields ... 83
IDLdbRecordset::SetField .. 84

Appendix A
ODBC Configuration on UNIX Systems .. 85
Overview of ODBC Configuration ... 86
ODBC Initialization File Format ... 88

ODBC Data Sources ... 88
Data Source Specification ... 88
Default Data Source Specification .. 89
ODBC Options .. 90

ODBC Initialization File Example .. 91

Index ... 93
DataMiner Guide Contents

6

Contents DataMiner Guide

Chapter 1

DataMiner Overview
The following topics are discussed in this chapter:
Introduction to IDL DataMiner and ODBC . 8
About This Volume 12
ODBC Conformance Levels 14

Network Access Requirements 16
Installation on UNIX Systems 17
DataMiner Guide 7

8 Chapter 1: DataMiner Overview
Introduction to IDL DataMiner and ODBC

The IDL DataMiner is an Open Database Connectivity (ODBC) interface that allows
IDL users to access and manipulate information from a variety of database
management systems. We developed IDL DataMiner so that IDL users can have all
the connectivity advantages of ODBC without having to understand the intricacies of
ODBC or SQL (Structured Query Language).

What Is IDL DataMiner?

IDL DataMiner is a database-independent API for accessing and manipulating data
stored in a database from within IDL. The IDL DataMiner allows you to do the
following:

• Connect to a database management system (DBMS)

• Query a DBMS

• Get information about the available database tables in a DBMS

• Access a table in a DBMS

• Create a table in a DBMS

• Delete a table in a DBMS

• Perform standard SQL operations in the DBMS

• Get information about the columns in a selected table

• Add/Change/Delete records in a table

What Is ODBC?

ODBC stands for Open Database Connectivity, an interface that allows applications
to access data in database management systems (DBMSs) using Structured Query
Language (SQL) as a standard for accessing data.

SQL is ODBC’s standard for accessing data and is a widely accepted industry
standard for data definition, data manipulation, data management, access protection,
and transaction control. The IDL DataMiner was designed so that users would not be
required to have a knowledge of SQL to access data sources. However, DataMiner
does provide an execution routine which allows users to perform any valid SQL
statement (including creating, retrieving, and deleting tables in a database).
Introduction to IDL DataMiner and ODBC DataMiner Guide

Chapter 1: DataMiner Overview 9
The ODBC specification defines a vendor-independent API for accessing data stored
in relational and non-relational databases. The Core functions and SQL grammar are
based on work done by the X/Open SQL Access Group. The ODBC architecture is
made up of four components:

• Database Application. The database application calls functions defined in the
ODBC API to access a data source.

• Driver Manager. The Driver Manager implements the ODBC API and
provides information to an application—such as a list of available data sources
and drivers— loads drivers dynamically as they are needed, and provides
argument and state transition checking.

• Drivers. Each driver processes ODBC function calls and manages exchanges
between an application and a data source.

• Data Source. A data source contains the data that an application needs to
access. The data source includes the data, the database management system
(DBMS) in which the data is stored, the platform on which the DBMS resides,
and the network (if any) used to access the DBMS.

An ODBC-compliant driver allows you to communicate between an ODBC-
compliant application and a DBMS. For example, the SYBASE SQL Server 10
driver allows you to connect your ODBC-compliant application to a Sybase SQL
Server 10 database.

An ODBC driver is available on most major platforms. The information in the
initialization file that the drivers use, the functions and SQL grammar that the drivers
support, and the error message formats are the same across all platforms.

The ODBC DriverSet is made up of two ODBC components—the Driver Manager
and a set of database drivers. With the ODBC DriverSet, you can access, query, and
update data in a number of different databases.

About the DataMiner ODBC Drivers

The IDL DataMiner includes a set of ODBC drivers known as Connect ODBC, that is
produced by DataDirect Technologies. Information about these drivers is available
at:

http://www.datadirect.com

IDL version 7.1 supports version 5.3 [Service Pack 1] of the Connect ODBC drivers
for most platforms.

The following tables describe the ODBC drivers that are included with and supported
by the IDL DataMiner, by platform.
DataMiner Guide Introduction to IDL DataMiner and ODBC

http://www.datadirect.com

10 Chapter 1: DataMiner Overview
Note
DataDirect Wire Protocol drivers do not require that database client software be
installed. All other drivers require that the appropriate client software be present.
For more information on DataDirect drivers, specific platform requirements, issues,
and how to configure the ODBC driver for use with your database, see the
appropriate version of the DataDirect Connect ODBC Reference manual. See
“About This Volume” on page 12 for further information on which manual is
appropriate for your installation.

You must install version 2.6 or higher of the Microsoft Data Access Components
(MDAC) on Windows platforms to use Connect ODBC drivers.

Driver Database
Windows Linux Solaris Sparc a

32-bit 64-bit 32-bit 64-bit 32-bit 64-bit

Btrieve Btrieve 6.5
Pervasive.SQL 7
Pervasive.SQL 2000

•

DB2
Wire Protocol

7.1, 7.2, 8.1, 9.1, 9.5

DB2 Universal
Database (UDB) 7.x,
8.1, 8.2, 9.1

• • • • • •

dBASE dBASE IV, V
Clipper
FoxPro 2.5, 2.6, 3.0

FoxPro 6.0 with 3.0
functionality only

FoxPro 3.0 database
container (DBC)

• • •

Informix
(client)

SE 7.2
Dynamic Server 9.2,
9.3, 9.4x, 10, 11

• •

Informix
Wire Protocol

Dynamic Server 9.2,
9.3, 9.4, 10

• • • • •

Table 1-1: Database Support by Platform, DataDirect version 5.3
Introduction to IDL DataMiner and ODBC DataMiner Guide

Chapter 1: DataMiner Overview 11
a DataMiner is not available on Solaris X86 platforms
b SUSE Enterprise Server 10.0 or 9.0 only

MySQL
Wire Protocol

MySQL 5.0.x server • • • • • •

Oracle (client) 7.3.4+ (w/Net8 Client)
8.0.5+
8i R1, R2, R3
9i R1, R2
10g R1, 11g

• • • • • b

Oracle
Wire Protocol

8i R2, R3
9i R1, R2
10g R1, R2

11g

• • • • • •

Paradox 4, 5, 7, 8, 9, 10 •

SQL Server
Wire Protocol

7.0

2000 (with Service
Packs 1, 2, 3, 3a, 4)

2000 Desktop Engine

2000 Enterprise
Edition (64-bit)

2005

• • • • • •

Sybase
Wire Protocol

Adaptive Server 11.5+
Adaptive Server
Enterprise 12.0, 12.5x,
15

• • • • • •

ASCII Text n/a • • •

XML n/a •

Driver Database
Windows Linux Solaris Sparc a

32-bit 64-bit 32-bit 64-bit 32-bit 64-bit

Table 1-1: Database Support by Platform, DataDirect version 5.3 (Continued)
DataMiner Guide Introduction to IDL DataMiner and ODBC

12 Chapter 1: DataMiner Overview
About This Volume

The IDL DataMiner Guide describes IDL’s ODBC interface. Information about
installation and configuration of the specific ODBC drivers provided with the
DataMiner system is supplied by the driver manufacturer. The manufacturer’s
documentation is provided in the help/DataDirect subdirectory of the IDL
installation directory.

To view the the DataDirect Connect for ODBC Help for 32-bit systems, use a web
browser to open the file

<IDL_DIR>/help/DataDirect/help.htm

For 64-bit systems, open

<IDL_DIR>/help/DataDirect64/help.htm

where <IDL_DIR> is the path to your IDL installation.

Audience

This manual assumes you have:

• a working knowledge of IDL,

• knowledge of your own DBMS.

Familiarity with SQL is helpful, but not required.

Organization

The IDL DataMiner Guide is divided into the following chapters:

• Chapter 1, (this chapter) discusses the manual’s intended audience,
organization, and conventions. This chapter also provides information about
ODBC conformance levels and network access requirements, and discusses
UNIX-specific installation issues.

• Chapter 2, “Using the IDL DataMiner”, discusses IDL DataMiner
functionality.

• Chapter 3, “IDL DataMiner API”, is a reference explaining the IDL DataMiner
object classes and their use.

• Appendix A, “ODBC Configuration on UNIX Systems”, explains the ODBC
initialization file and its contents.
About This Volume DataMiner Guide

javascript:doIDL("PUSHD, !DIR+�/help/DataDirect� & ONLINE_HELP, BOOK=�help.htm� & POPD")
javascript:doIDL("PUSHD, !DIR+�/help/DataDirect64� & ONLINE_HELP, BOOK=�help.htm� & POPD")

Chapter 1: DataMiner Overview 13
Terminology

The following terms are used throughout this manual:

DBMS: Database Management System

data source: A specific instance of a combination of a DBMS product, any remote
operating system, and network necessary to access the DBMS.

recordset: A subset of the records in the current database. Recordsets are created
either by formulating an SQL query to select records or by selecting an existing
named table in the database.

cursor: The current location or current record in a recordset.

Where to Find Additional Information

For more information about ODBC, refer to the following:

• Microsoft ODBC Programmer’s Reference and SDK Guide (Version 3.0).
This programmer’s reference introduces the ODBC architecture and explains
how to write ODBC drivers and applications that use ODBC for Windows. It
also contains the ODBC API Reference, in which each of the functions in the
ODBC API is listed in alphabetic order and described in detail. The SDK guide
explains how to install and use the SDK software.
DataMiner Guide About This Volume

14 Chapter 1: DataMiner Overview
ODBC Conformance Levels

ODBC defines two different conformance standards for drivers—the API
conformance standard and the SQL conformance standard. Each conformance
standard is made up of three levels. These levels help application and driver
developers establish standard sets of functionality. See Appendix C, “ODBC API and
Scalar Functions” in the DataDirect Connect ODBC Reference for more information
on ODBC conformance levels.

API Conformance Levels

The API conformance standard is made up of three levels:

• Core API. A set of core functions that correspond to the functions in the
X/Open SQL Access Group Call Level Interface specification.

• Level 1 API. Core API functionality plus all Level 1 functionality.

• Level 2 API. Core and Level 1 API functionality plus all Level 2 functionality.

ODBC API Functions

The Connect ODBC drivers support all Core and Level 1 functions. In addition, each
driver supports a key set of the Level 2 functions. For a list of supported Level 2
functions by driver, refer to the “ODBC Conformance Levels” section for the
database you are connecting to in the Connect ODBC Reference.

SQL Conformance Levels

SQL conformance is made up of three levels—Minimum, Core, and Extended. The
Minimum level is designed to meet the basic level of ODBC conformance. The Core
level roughly corresponds to the X/Open SQL Access Group SQL CAE specification
(1995) and the Extended level provides common DBMS extensions to SQL. Most of
the Connect ODBC drivers support all Minimum and Core SQL grammar. In
addition, each driver supports a number of extended SQL statements, expressions,
and data types. For a list of supported Extended SQL grammar by driver, refer to the
appropriate “ODBC Conformance Levels” section in each chapter.

Minimum SQL Grammar

The Minimum level of SQL grammar consists of the following statements,
expressions, and data types:

• Data Definition Language (DDL): CREATE TABLE and DROP TABLE
ODBC Conformance Levels DataMiner Guide

Chapter 1: DataMiner Overview 15
• Data Manipulation Language (DML): simple SELECT, INSERT, UPDATE,
SEARCHED, and DELETE SEARCHED

• Expressions: simple (such as A>B+C)

• Data types: CHAR, VARCHAR, or LONG VARCHAR

Core SQL Grammar

The Core level of SQL grammar consists of the following statements, expressions,
and data types:

• Minimum SQL grammar and data types

• Data Definition Language (DDL): ALTER TABLE, CREATE INDEX, DROP
INDEX, CREATE VIEW, DROP VIEW, GRANT, and REVOKE

• Data Manipulation Language (DML): full SELECT

• Expressions: subquery, set functions such as SUM and MIN

• Data Types: DECIMAL, NUMERIC, SMALLINT, INTEGER, REAL,
FLOAT, DOUBLE PRECISION

Extended SQL Grammar

The Extended level of SQL grammar consists of the following statements,
expressions, and data types:

• Minimum and Core SQL grammar and data types

• Data Manipulation Language (DML): outer joins, positioned UPDATE,
positioned DELETE, SELECT FOR UPDATE, and unions

• Expressions: scalar functions such as SUBSTRING, ABS, date, time, and
timestamp literals

• Data types: BIT, TINYINT, BIGINT, BINARY, VARBINARY, LONG
VARBINARY, DATE, TIME, TIMESTAMP

• Batch SQL statements

• Procedure calls
DataMiner Guide ODBC Conformance Levels

16 Chapter 1: DataMiner Overview
Network Access Requirements

To access an external database, you must be able to connect to the network, have
access to the external database, and have access to the server on which the external
database is located. Database permissions are established using the security features
of the external database. If you do not have the proper access permissions, consult
your local database administrator.

Note
Some database systems require that a database-specific network package be
installed. Consult your database and database driver documentation for details.
Network Access Requirements DataMiner Guide

Chapter 1: DataMiner Overview 17
Installation on UNIX Systems

IDL DataMiner system components, including ODBC drivers, are installed
automatically by the IDL installation program (assuming you elected to install the
DataMiner components when installing IDL). On UNIX systems, you may need to
make some of the following additional modifications; at the very least, you will need
to copy the default ODBC initialization file created by the installer to your $HOME
directory.

ODBC Initialization File

During the installation process, the IDL installation program creates a template
ODBC initialization file. This file describes the installed ODBC drivers and allows
you to configure the drivers to suit your needs.

The template file contains information about the ODBC drivers installed on your
system by IDL, but nothing about your specific data sources. At the very least, you
will need to add the data source names to the ODBC initialization file; depending on
your specific installation, you may also need to add details such as the database host
name and database instance name. You might also wish to make database access
more convenient by specifying login or password information. You will also need to
either copy the template ODBC initialization file to your $HOME directory or create
an environment variable pointing to its location. See Appendix A, “ODBC
Configuration on UNIX Systems” for details.

Oracle ODBC Drivers

On some UNIX systems, the Oracle ODBC drivers must be linked against portions of
the Oracle installation. For more information on how this is performed consult the
files located in the Dataminer directory:

$IDL_DIR/bin/bin.platform/dm/src/oracle

where platform is the name of your operating system.

Note
If this directory does not exist, this operation is not required.
DataMiner Guide Installation on UNIX Systems

18 Chapter 1: DataMiner Overview
Installation on UNIX Systems DataMiner Guide

Chapter 2

Using the IDL
DataMiner
This chapter describes the functionality and syntax of the IDL DataMiner. For more detail on how
to use IDL DataMiner classes to perform actions on a DBMS, see Chapter 3, “IDL DataMiner
API”. For information on IDL commands and syntax, see the IDL Reference Guide.
Components . 20
Using the DB_EXISTS Function 21
Creating a Database Object 22
Connecting to a Database 23
Finding Tables . 26
Connecting to a Table 27

Working with Table Data 28
Example . 30
ODBC SQL Syntax Notes 32
Data Type Mappings 35
Error Messages . 36
DataMiner Guide 19

20 Chapter 2: Using the IDL DataMiner
Components

The IDL DataMiner provides two IDL objects for accessing databases:

• Database object (IDLdbDatabase)

• Recordset object (IDLdbRecordset)

A full discussion of IDL objects is beyond the scope of this manual. Consult the
Application Programming manual for details about IDL’s object-oriented
programming features.

The Database object contains instance data and methods that you can use to connect
to, disconnect from, and perform operations on a DBMS. The Recordset object
contains a database table or the results from a SQL query. You can use Recordset
methods to manipulate table data.

Note
Some of the methods associated with IDL database and recordset objects are driver-
dependent. This means that some functions are not available when you are using
database drivers that do not support those functions.

The IDL DataMiner also provides an IDL function, DIALOG_DBCONNECT, that
you can use to connect to the DBMS via the standard ODBC dialog boxes. Using this
method, you are prompted for any information that is required to connect to the
desired database.

Finally, the IDL function DB_EXISTS allows you to determine if database
functionality is available and licensed on a specific platform.
Components DataMiner Guide

Chapter 2: Using the IDL DataMiner 21
Using the DB_EXISTS Function

The ODBC system is not available on all systems. Use the DB_EXISTS function to
determine if a database is available and licensed on your system. To check whether
ODBC is available on your system, enter the following at the IDL prompt:

status = DB_EXISTS()

If IDL DataMiner and ODBC drivers are installed on your system and the DataMiner
option is properly licensed, the DB_EXISTS function returns 1; otherwise the
function returns 0.
DataMiner Guide Using the DB_EXISTS Function

22 Chapter 2: Using the IDL DataMiner
Creating a Database Object

To connect to a database, you must first create an IDL Database Object using the
following statement:

objDB = OBJ_NEW('IDLdbDatabase')

The newly-created database object represents a connection to a datasource. The
object is not considered valid until a connection to the datasource is made, either via
the Connect method of the IDL Database Object or the DIALOG_DBCONNECT
function.

Once the Database Object has been created, you can perform operations including:

• connecting to a database,

• finding out which databases are available,

• finding out if a specific database is available,

• get properties of the database object.

Finding Available Databases

To find out which databases are available, use the database object’s
GetDatasources method as follows.

sources = objDB->GetDatasources()

The result is an array of IDL structures containing the datasource names and
descriptions of all available data sources. See “IDLdbDatabase::GetDatasources” on
page 58 for further information on this structure.

Finding a Specific Database

To find out if a specific database is available, inspect the list of datasources returned
by the GetDatasources method. The following IDL commands check to see if
“Informix” is listed in the array of data sources, and if so, print the word “Yes” to the
IDL command log:

index = WHERE(sources.datasource EQ 'Informix', nmatch)
IF(nmatch ge 1) THEN PRINT, 'Yes'

If the desired database is reported as available, the database driver is installed on your
system. You will still need to make sure that the driver is configured correctly before
you are able to connect to a database.
Creating a Database Object DataMiner Guide

Chapter 2: Using the IDL DataMiner 23
Connecting to a Database

Once you have created a Database object, you can connect to a database. IDL
DataMiner offers two options for accessing databases:

1. The DIALOG_DBCONNECT function and the ODBC dialog boxes.

2. The Connect method of the IDL Database Object.

Connecting with the DIALOG_DBCONNECT Function

DIALOG_DBCONNECT is a function used to connect to a database using ODBC
dialog boxes. These dialogs prompt you for information required to connect to the
desired database.

To connect to a database using the DIALOG_DBCONNECT function, enter the
following at the IDL prompt:

status = DIALOG_DBCONNECT(objDB)

The SQL Data Sources dialog box appears. This dialog box lists the currently defined
Data Sources; it looks something like the following figure:

You can take one of three actions:

Note
Due to Motif library inconsistencies, this dialog may fail on some UNIX systems.

• Select the desired data source and click “OK”. After selecting this button, a
“true” value is returned if the database object connects to the data source.

Figure 2-1: SQL Data Sources (Windows dialog)
DataMiner Guide Connecting to a Database

24 Chapter 2: Using the IDL DataMiner
• Cancel the operation by clicking “Cancel”. After selecting this button, a
“false” value is returned, and the database object does not connect to the data
source.

• On Windows systems, click “New” to define a new data source for the system.
After selecting this button, the Add Data Source dialog box appears. This
button is not available on Motif systems.

Define a new data source for the system by selecting the desired ODBC driver from
the list and clicking the OK button. The dialog box will close and you will be
connected to a database. In some cases, you will see an additional configuration
dialog after the Add Data Source dialog closes.

Figure 2-2: SQL Data Sources (Motif dialog)

Figure 2-3: Add Data Source
Connecting to a Database DataMiner Guide

Chapter 2: Using the IDL DataMiner 25
Connecting with the IDL Database Object’s Connect Method

To connect to a database using the database object’s Connect method, enter the
following at the IDL prompt:

objDB->Connect, datasource = source_name

where source_name is the name of the data source. One way to specify the
datasource name is to provide an index into the array of datasource names created
with the IDL commands shown in “Finding Available Databases” on page 22, above.
For example, if you wanted to connect to the first available datasource in the list of
available sources, you might use the following IDL commands:

sources = objDB->GetDatasources()
mysource = sources[0].datasource
objDB->Connect, datasource = mysource

Once you have connected to a database, you can perform several operations using
IDL DataMiner methods. These operations include:

• finding out which tables are available in the datasource;

• finding specific tables in the datasource;

• executing SQL statements to perform actions such as creating a table or
deleting a table;

• getting database properties;

• creating a recordset and connecting to tables; and

• retrieving and manipulating table data.
DataMiner Guide Connecting to a Database

26 Chapter 2: Using the IDL DataMiner
Finding Tables

Once you have connected to the database, you can get a list of available tables or find
a specific table.

Finding Available Tables

To find out which tables are available, use the GetTables method of the database
object:

tables = objDB->GetTables()

Note
The GetTables method is not available with all drivers.

The result is an array of IDL structures containing information about the available
tables. See “IDLdbDatabase::GetTables” on page 60 for further information on this
structure.

Finding Specific Tables

To find out if a specific table is available, inspect the list of tables returned by the
GetTables method. The following IDL commands check to see if “mytable” is
listed in the array of tables, and if so, print the word “Yes” to the IDL command log:

index = WHERE(tables.name EQ 'mytable', nmatch)
IF(nmatch ge 1) THEN PRINT, 'Yes'

You are now ready to connect to the table and retrieve data.
Finding Tables DataMiner Guide

Chapter 2: Using the IDL DataMiner 27
Connecting to a Table

Connecting to a table and retrieving its data involves:

• creating a Recordset object,

• specifying the table from which the information is being retrieved.

The recordset object contains a database table or a selection based on criteria you
specify in an SQL query. This object allows you to programmatically manipulate the
data in the database. To create this object, a valid database object is required.

In the following example, a new Recordset object is being created for a table called
“mydata.”

objRS = OBJ_NEW('IDLDBRecordset', objDB, table='mydata')

Once you have connected to a table, you can use IDL DataMiner methods to
manipulate the data in several ways as depicted in the examples provided in the next
section.

Note
When a table is selected, the entire data contained in the table is not automatically
imported into IDL. This preserves memory. You can retrieve the desired data in a
recordset by moving the cursor to the desired record via the MoveCursor method
and then importing that data into IDL using the GetField or GetRecord method.
DataMiner Guide Connecting to a Table

28 Chapter 2: Using the IDL DataMiner
Working with Table Data

Once you have created the Recordset object and connected to a table, you can use
IDL DataMiner methods to retrieve and manipulate the data in several ways. For
example, you can:

• find out if a table is “ReadOnly”,

• get properties of the recordset,

• move the cursor,

• add records,

• delete records,

• retrieve fields,

• set fields,

• find the current row number in a recordset,

• find the number of fields in a recordset,

• get an array of field information structures, one for each field in the recordset.

You can also obtain information about a database or recordset concerning the
following:

• the number of table fields,

• the name of DBMS associated with a database object,

• the DBMS version,

• a list of available drivers,

• the ODBC driver level,

• the ODBC driver version,

• the maximum number of connections.

Moving Through a Recordset

Moving through recordsets is based on the concept of the cursor. The cursor is the
current row, or record, in the recordset. When you refer to fields in a Recordset, you
obtain values from the current record, and only the current record can be modified.
Working with Table Data DataMiner Guide

Chapter 2: Using the IDL DataMiner 29
You can use the Recordset object’s MoveCursor method to navigate through the
records in a recordset. Keywords to the MoveCursor method allow you to specify
new cursor locations.

In the following example, the MoveCursor method and FIRST keyword move to the
first record.

status = objRS->MoveCursor(/FIRST)

In the following example, the MoveCursor method and NEXT keyword move to the
next record.

status = objRS->MoveCursor(/NEXT)
DataMiner Guide Working with Table Data

30 Chapter 2: Using the IDL DataMiner
Example

The following example steps you through the process of creating a database object,
connecting to a datasource, creating a table, and moving data between the database
and IDL. The example uses the SQLAnywhere server; you will need to replace
references to the SQLAnywhere server with references to your own specific database
server. In order to work through this example, you will need to be able to connect to
and log on to your database server.

First, create a database object. Enter the following at the IDL command prompt:

oDB = obj_new('IDLDBDatabase')

Use the GetDatasources method to discover the names of the datasources available
on your system, the print the list to your command log window:

sources = oDB->GetDatasources()
PRINT, sources.datasource, FORMAT=’(a)’

IDL will print something like the following:

SybaseDBLib
Sybase
SQLAnywhere
Oracle
Ingres
Informix
MSSQLServer

Connect to the SQLAnywhere server. (Substitute your own datasource, username,
and password.)

oDB->Connect, DataSource = 'SQLAnywhere', $
user=username, password=passwd

Get a list of the available tables:

tables = oDB->GetTables()
PRINT, tables.name, FORMAT=’(a)’

IDL will print something like the following:

sysalternates
sysarticles
syscolumns
syspublications
sysreferences
systypes
sysusers
mydata
Example DataMiner Guide

Chapter 2: Using the IDL DataMiner 31
Create a new table named “im_info” using SQL commands:

oDB->ExecuteSQL, $
"create table im_info (id integer, x integer," + $
"y integer, data image, name char(50))"

Now create a Recordset object and connect to the table you just created:

oRS = obj_new('IDLdbRecordSet', oDB, table='im_info')

Add a record to the object. This record contains four fields that describe an image: the
width of the image, the height of the image, the image data itself, and the name of the
image.

oRS->AddRecord, 1, 400, 400, BYTSCL(DIST(400)), 'first image'

Move the current location in the table (the cursor position) to the first row:

status = oRS->MoveCursor(/FIRST)

You can check the value of the variable status and report on whether the move was
successful:

IF(status NE 1) THEN BEGIN
PRINT, 'Error moving database cursor'
RETURN

ENDIF

Retrieve the information from this record into IDL variables:

X = oRS->GetField(1)X size of image
Y = oRS->GetField(2)Y size of image
image = oRS->GetField(3)Image data
name = oRS->getField(4)Image name

Create an IDL window to display the image:

WINDOW, COLORS=-5, TITLE=name, XSIZE=x, YSIZE=y

Reform the image into two dimensions (ODBC data is stored as a one-dimensional
stream of bytes):

image = REFORM(image, 400, 400)

Display the image:

TVSCL, image

Now, delete the im_info table and destroy the database objects:

oDB->ExecuteSQL, 'drop table im_info'
OBJ_DESTROY, oDB
DataMiner Guide Example

32 Chapter 2: Using the IDL DataMiner
ODBC SQL Syntax Notes

While this manual does not attempt to describe SQL syntax, the questions
surrounding the following special ODBC syntax arise frequently enough to bear
mentioning here. Consult your ODBC reference for detailed information on these
topics.

Reserved ODBC SQL Words

While using the IDLdbDatabase::ExecuteSQL method in Dataminer, do not use the
following reserved words in the SQL command string: DOUBLE, FLOAT, and
TEMP. These words are reserved in ODBC SQL and result in syntax errors if you
attempt to use them in your SQL code.

Date, Time, and Timestamp Data

Because there are a wide variety of date and time formats in use by different
databases, ODBC uses a special clause in the SQL statement to identify dates and
times. The syntax is:

For example, to use a date-and-time timestamp, the SQL statement might look
something like:

select time from events where time > { ts '1997-01-16 08:50:43' }

Scalar Functions

Scalar functions—string length, absolute value, or date, for example—require a
special clause. To call a scalar function when selecting a result set, use syntax like:

{fn scalar-function}

where scalar-function is the name of the scalar function you are calling. For example,
calling the UCASE function on a field might look something like this:

Syntax Format

{d 'value'} yyyy-mm-dd

{t 'value'} hh:mm:ss

{ts 'value'} yyyy-mm-dd hh:mm:ss

Table 2-1: Date, Time, and Timestamp Syntax
ODBC SQL Syntax Notes DataMiner Guide

Chapter 2: Using the IDL DataMiner 33
SELECT { fn UCASE(NAME) } FROM employee

Converting Data

ODBC provides a scalar function that requests that the data source convert data from
one SQL data type to another. The syntax is:

{ fn CONVERT(value_expression, data_type) }

where value_expression is the name of a column from a table, a literal value, or the
result of another scalar function, and data_type is one of ODBC’s defined data types.

LIKE Predicate Escape Characters

When using an SQL LIKE predicate, the percent character (%) and the underscore
character (_) have special meanings. You can include these characters as literals in a
LIKE predicate by using an escape clause, which has the following syntax:

{ escape 'escape-character' }

where escape-character is a character used in front of the special character to force
evaluation with its literal value.

For example, since the percent character matches zero or more of any character when
used in a LIKE predicate, the string '%AAA%' would match any number any
character, followed by three “A”s, followed by any number of any character. Using
an escape clause in the LIKE predicate allows you to use the literal “%” in the string.
For example:

select name where name like '\%AAA%' { escape '\' }

selects names that include the percent character, followed by three “A”s, followed by
any number of any character. The backslash (\) is used to “escape” the percent
character.

Outer Joins

ODBC supports the ANSI SQL-92 left outer join syntax. The syntax is:

{ oj outer-join }

where outer-join is:

table-reference LEFT OUTER JOIN
{ table-reference | outer-join } ON search-condition

Consult your ODBC documentation for further details on outer joins.
DataMiner Guide ODBC SQL Syntax Notes

34 Chapter 2: Using the IDL DataMiner
Procedure Calls

An application can call a procedure in place of an SQL statement. The syntax for a
procedure call is:

{ [?=] call procedure-name[([parameter],[parameter],...)] }

where procedure-name specifies the name of a procedure (stored on the data source)
and parameters are parameters of the procedure.

Consult your ODBC documentation for further details on procedure calls.
ODBC SQL Syntax Notes DataMiner Guide

Chapter 2: Using the IDL DataMiner 35
Data Type Mappings

SQL data types have been mapped to IDL DataMiner data types so that you can
access and manipulate the data without having to fully understand SQL. Table 2-2
details these mappings.

IDL Type SQL Type

STRING DECIMAL

NUMERIC

CHAR

LONG VARCHAR

BYTE BIT

TINYINT

BIGINT

INT SMALLINT

LONG INTEGER

LONG64 BIGINT

FLOAT REAL

DOUBLE FLOAT

DOUBLE PRECISION

BYTE ARRAY BINARY

VARBINARY

VARCHAR

LONG VARBINARY

ODBC_SQL_DATE Struct DATE

ODBC_SQL_TIME Struct TIME

ODBC_SQL_TIMESTAMP Struct TIMESTAMP

Table 2-2: IDL - SQL Type Code Mapping
DataMiner Guide Data Type Mappings

36 Chapter 2: Using the IDL DataMiner
Error Messages

The error messages returned by the IDL DataMiner follow the ODBC standard error
message format as outlined in the ODBC Software Development Kit. ODBC error
messages use one of the following formats, depending on whether the VERBOSE
property is set on the database. (See “IDLdbDatabase::SetProperty” on page 63 for a
description of the VERBOSE property.)

Standard Messages

If the VERBOSE property is set equal to zero (the default), the error message has the
form:

[vendor-identifier] [ODBC-component-identifier]
[data-source-identifier] data-source-text, component-text

where

[vendor-identifier] shows the vendor of the component in which the error
occurred, or that received the error directly from the data source.

[ODBC-component-identifier] shows the component in which the error
occurred, or that received the error directly from the data source.

[data-source-identifier] shows the data source in which the error occurred.

data-source-text is the text generated by the data source, if the error occurred in
a data source.

component-text is the text generated by the ODBC component, if the error
occurred in an ODBC component.

Verbose Messages

If the VERBOSE property is set equal to one, the following fields precede the
standard error message:

SQL Function=<function name>, STATE=<state number>,
CODE=<error code>

where

<function name> is the actual ODBC C function that triggered the error. This
information is needed for the interpretation of the STATE error code.

<state number> is a 5 character string that defines an error code returned from the
ODBC system. This code along with the SQL Function name can be used to
determine the actual cause of the ODBC error.
Error Messages DataMiner Guide

Chapter 2: Using the IDL DataMiner 37
<error code> is the error code returned from the data source. This code is a native
error of the datasource and describes the error condition that the datasource detected.

For example, a standard error message from a data source might look like this:

% IDLDBDATABASE::CONNECT: ODBC [Microsoft]
[ODBC SQL Server Driver][netlibtcp]
ConnectionOpen (connect()).

The verbose error message for the same error:

% IDLDBDATABASE::CONNECT: ODBC
SQL Function=SQLDriverConnect, STATE=01000,
CODE=146,[Microsoft][ODBC SQL Server Driver]
[netlibtcp] ConnectionOpen (connect()).
DataMiner Guide Error Messages

38 Chapter 2: Using the IDL DataMiner
Error Messages DataMiner Guide

Chapter 3

IDL DataMiner API
This chapter describes the IDL DataMiner functions, objects, and methods.
How to Use This Chapter 40
DIALOG_DBCONNECT 43
DB_EXISTS . 45

IDLdbDatabase . 46
IDLdbRecordset . 64
DataMiner Guide 39

40 Chapter 3: IDL DataMiner API
How to Use This Chapter

The functions, object descriptions, and method descriptions for the IDL DataMiner
are documented alphabetically in this chapter. The page or pages describing each
class include references to sub- and super-classes, and to the methods associated with
the class. Class methods are documented alphabetically following the description of
the class itself.

A description of each method follows its name. Beneath the general description of the
method are sections that describe the calling sequence for the method, its arguments
(if any), and its keywords (if any). These sections are described below.

Note
IDL DataMiner must be licensed on your system to be able to use these functions
and objects.

Syntax

The “Syntax” section shows the proper syntax for calling the method.

Procedure Methods

IDL procedures have the calling sequence:

PROCEDURE_NAME, Argument [, Optional_Arguments]

where PROCEDURE_NAME is the name of the procedure, Argument is a required
parameter, and Optional_Argument is an optional parameter to the procedure.

IDL procedure methods have the calling sequence:

Obj→PROCEDURE_NAME, Argument [, Optional_Arguments]

where Obj is a valid object reference, PROCEDURE_NAME is the name of the
procedure method, Argument is a required parameter, and Optional_Argument is an
optional parameter to the procedure method.

Note
The square brackets around optional arguments are not used in the actual call to the
procedure; they are simply used to denote the optional nature of the arguments
within this document.
How to Use This Chapter DataMiner Guide

[/Dest /HOWTOUSETHISCHAPTER /DEST

Chapter 3: IDL DataMiner API 41
Functions

IDL functions have the calling sequence:

Result = FUNCTION_NAME(Argument [, Optional_Arguments])

where Result is the returned value of the function, FUNCTION_NAME is the name
of the function, Argument is a required parameter, and Optional_Argument is an
optional parameter.

IDL function methods have the calling sequence:

Result = Obj→FUNCTION_NAME(Argument [, Optional_Arguments])

where Obj is a valid object reference, Result is the returned value of the function
method, FUNCTION_NAME is the name of the function method, Argument is a
required parameter, and Optional_Argument is an optional parameter.

Note
The square brackets around optional arguments are not used in the actual call to the
function; they are simply used to denote the optional nature of the arguments within
this document. Note also that all arguments and keyword arguments to functions
should be supplied within the parentheses that follow the function’s name.

Arguments

The “Arguments” section describes each valid argument to the routine. Note that
these arguments are positional parameters that must be supplied in the order indicated
by the method’s calling sequence.

Named Variables

Often, arguments that contain values upon return from the function or procedure
(“output arguments”) are described as accepting “named variables”. A named
variable is simply a valid IDL variable name. This variable does not need to be
defined before being used as an output argument. Note, however that when an
argument calls for a named variable, only a named variable can be used—sending an
expression causes an error.

Keywords

The “Keywords” section describes each valid keyword argument to the routine. Note
that keyword arguments are formal parameters that can be supplied in any order.
DataMiner Guide How to Use This Chapter

42 Chapter 3: IDL DataMiner API
Keyword arguments are supplied to IDL methods by including the keyword name
followed by an equal sign (“=”) and the value to which the keyword should be set.
Note that keywords can be abbreviated to their shortest unique length. For example,
the XSTYLE keyword can be abbreviated to XST.

Setting Keywords

When the documentation for a keyword says something similar to, “Set this keyword
to enable logarithmic plotting,” the keyword is simply a switch that turns an option
on and off. Usually, setting such keywords equal to 1 causes the option to be turned
on. Explicitly setting the keyword to zero (or not including the keyword) turns the
option off.

There is a “shortcut” that can be used to set a keyword equal to 1 without the usual
syntax (i.e., KEYWORD=1). To “set” a keyword, simply preface it with a slash
character (“/”). For example, to plot a wire mesh surface with a skirt around it, set the
SKIRT keyword to the SURFACE routine as follows:

SURFACE, DIST(10), /SKIRT

Creating Database Objects

To create a database object, use the OBJ_NEW function (see “OBJ_NEW” in the IDL
Reference Guide). The Init method for each class describes the arguments and
keywords available when you are creating a new graphics object.

For example, to create a new database object, use the following call to OBJ_NEW:

myDB = OBJ_NEW('IDLdbDatabase')

Destroying Database Objects

To destroy a database object, use the OBJ_DESTROY procedure (see
“OBJ_DESTROY” (IDL Reference Guide)). The Cleanup method is called to
perform any class-specific cleanup operations before the object is destroyed.

For example, to remove database object, use the following call to OBJ_DESTROY:

OBJ_DESTROY, myDB
How to Use This Chapter DataMiner Guide

Chapter 3: IDL DataMiner API 43
DIALOG_DBCONNECT

Use the DIALOG_DBCONNECT function to connect to the DBMS via the standard
ODBC dialog boxes. You will be prompted for information required to connect to the
desired database.

Note
Due to Motif library inconsistencies, this dialog may fail on SUN Solaris systems.

Syntax

status = DIALOG_DBCONNECT(DBobj [, DATASOURCE=string]
[, USER_ID=string] [, PASSWORD=string]
[, DIALOG_PARENT=widget id])

Return Value

The function returns true (1) unless you selected the dialog’s Cancel button, in which
case it returns false (0).

Arguments

DBobj

A valid IDLdbDatabase object that is not already connected to a data source.

Keywords

DATASOURCE

Set this keyword equal to the name of a data source to which you wish to connect. (If
you do not know the data source name in advance, you can use the GetDatasources
method of the IDLdbDatabase object to retrieve a list of available data sources.)

USER_ID

Set this keyword equal to the user login name or ID used to log into the datasource.

PASSWORD

Set this keyword equal to the password corresponding to the user ID.
DataMiner Guide DIALOG_DBCONNECT

[/Dest /DIALOG_DBCONNECT /DEST

44 Chapter 3: IDL DataMiner API
DIALOG_PARENT

Set this keyword equal to the widget ID of a widget over which the dialog should be
positioned.

Version History

5.0 Introduced
DIALOG_DBCONNECT DataMiner Guide

Chapter 3: IDL DataMiner API 45
DB_EXISTS

Use the DB_EXISTS function to determine if the database functionality is available
on a specific platform.

Syntax

status = DB_EXISTS()

Return Value

DB_EXISTS returns true (1) if the platform in use supports ODBC and the user is
licensed to use the IDL DataMiner, or false (0) if it is not available.

Arguments

None.

Keywords

None.

Version History

5.0 Introduced
DataMiner Guide DB_EXISTS

[/Dest /DB_EXISTS /DEST

46 Chapter 3: IDL DataMiner API
IDLdbDatabase

An IDLdbDatabase object represents a connection to a datasource. Use the
IDLdbDatabase object’s instance data and methods to connect to, disconnect from,
and perform operations to a Database Management System (DBMS).

Superclasses

None

Creation

Use the following IDL command to create a new database object:

DBObj = OBJ_NEW('IDLdbDatabase')

Note that the returned database object is not considered valid until a connection to the
datasource is made, either via the IDLdbDatabase::Connect method or the
DIALOG_DBCONNECT function.

Properties

Objects of this class have the following properties. See “IDLdbDatabase Properties”
on page 48 for details on individual properties.

• CAN_GET_TABLES

• DBMS_NAME

• DRIVER_ODBC_LEVEL

• DBMS_VERSION

• DRIVER_VERSION

• IS_CONNECTED

• IS_READONLY

• MAX_CONNECTIONS

• MAX_RECORDSETS

• ODBC_LEVEL

• SQL_LEVEL

• SQL_SERVER_NAME
IDLdbDatabase DataMiner Guide

[/Dest /IDLDBDATABASE /DEST

Chapter 3: IDL DataMiner API 47
• USE_CURSOR_LIB

• USER_NAME

• VERBOSE

Methods

This class has the following methods:

• “IDLdbDatabase::Cleanup” on page 53

• “IDLdbDatabase::Connect” on page 54

• “IDLdbDatabase::ExecuteSQL” on page 56

• “IDLdbDatabase::GetDatasources” on page 58

• “IDLdbDatabase::GetProperty” on page 59

• “IDLdbDatabase::GetTables” on page 60

• “IDLdbDatabase::Init” on page 61

• “IDLdbDatabase::SetProperty” on page 63

Version History

5.0 Introduced
DataMiner Guide IDLdbDatabase

48 Chapter 3: IDL DataMiner API
IDLdbDatabase Properties

IDLdbDatabase objects have the following properties in addition to properties
inherited from any superclasses. Properties with the word “Yes” in the “Get” column
of the property table can be retrieved via IDLdbDatabase::GetProperty. Properties
with the word “Yes” in the “Set” column in the property table can be set via
IDLdbDatabase::SetProperty.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” (Chapter 28, IDL Reference Guide).

CAN_GET_TABLES

If True, the GetTables method is available for the current driver.

DBMS_NAME

The name of the Database with which the object is associated.

DRIVER_ODBC_LEVEL

The ODBC level supported by the driver being used to connect to the database.

Property Type Boolean

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type String

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type String

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLdbDatabase Properties DataMiner Guide

[/Dest /IDLDBDATABASEPROPERTIES /DEST

Chapter 3: IDL DataMiner API 49
DBMS_VERSION

The version number of the Database that the object is associated with.

DRIVER_VERSION

The version number of the ODBC driver being used to connect to the database.

IS_CONNECTED

If True, a connection to a database exists.

IS_READONLY

If True, the database is read-only.

Property Type String

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type String

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Boolean

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Boolean

Name String not displayed

Get: Yes Set: No Init: No Registered: No
DataMiner Guide IDLdbDatabase Properties

50 Chapter 3: IDL DataMiner API
MAX_CONNECTIONS

The maximum number of connections supported by the ODBC driver. If the
maximum value is unknown, this property will contain 0.

MAX_RECORDSETS

The maximum number of recordsets supported by the ODBC driver. If the maximum
is unknown, this property will contain 0.

ODBC_LEVEL

The ODBC level of the driver manager.

SQL_LEVEL

The SQL level supported by the connection.

Property Type Integer

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Integer

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type String

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type String

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLdbDatabase Properties DataMiner Guide

Chapter 3: IDL DataMiner API 51
SQL_SERVER_NAME

The SQL server name for this database connection.

USE_CURSOR_LIB

If True, the ODBC cursor library will be used. The ODBC cursor library is used to
emulate advanced functionality on data sources that don’t support the advanced
functions. If you find that advanced functionality is not available using your
database’s standard driver, try using the ODBC cursor library. Advanced
functionality supported by the cursor library includes positioned updates, positioned
deletes, and multi-directional cursor movement.

Note
This property must be set (or unset) before the connection to the data source is
made. Once the connection is made, this property cannot be changed. The default is
to not use the cursor library.

Warning
To support the above-mentioned operations, the cursor library constructs SQL
search statements to locate the desired record. If the WHERE clause of the
generated SQL statement selects more than one row, the operation will affect more
than one record.

Warning
On some systems the ODBC cursor library is loaded dynamically. The ODBC
system cannot detect whether the library was loaded successfully, so this property
may contain a True value if the USE_CURSOR_LIB property was set, even if the
cursor library was not subsequently loaded.

Property Type String

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type BOOLEAN

Name String not displayed

Get: Yes Set: Yes Init: No Registered: No
DataMiner Guide IDLdbDatabase Properties

52 Chapter 3: IDL DataMiner API
USER_NAME

The user name used during the connection to the datasource.

VERBOSE

If True, verbose error messages will be generated. Normal error messages contain a
text explanation (normally from the ODBC system) of the error. Verbose message
include the following additional information:

• The name of the ODBC function that failed,

• The error code from the ODBC system,

• The error code from the database.

Property Type String

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type BOOLEAN

Name String not displayed

Get: No Set: Yes Init: No Registered: No
IDLdbDatabase Properties DataMiner Guide

Chapter 3: IDL DataMiner API 53
IDLdbDatabase::Cleanup

The IDLdbDatabase::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object creation and destruction. This means that in most cases, you
cannot call the Cleanup method directly. There is one exception to this rule: if you
write your own subclass of this class, you can call the Cleanup method from within
the Init or Cleanup method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj->[IDLdbDatabase::]Cleanup (In a lifecycle method only.)

Arguments

None

Keywords

None

Version History

5.0 Introduced
DataMiner Guide IDLdbDatabase::Cleanup

54 Chapter 3: IDL DataMiner API
IDLdbDatabase::Connect

Use the IDLdbDatabase::Connect procedure method to connect to the data source
associated with a database object.

Syntax

DBobj -> [IDLdbDatabase::]Connect [, CONNECTION=string]
[, DATASOURCE=string] [, USER_ID=string] [, PASSWORD=string]

Arguments

None.

Keywords

CONNECTION

Set this keyword equal to a raw ODBC connection string. No preprocessing is
performed on the string before it is passed to the ODBC system. If this keyword is
set, all other keywords are ignored. This keyword is useful mainly for advanced
ODBC users.

DATASOURCE

Set this keyword equal to a string containing the name of a datasource to which you
wish to connect. This name is dependent on the data source. Depending on the
database you use, you may be able to specify a default data source. See the Connect
ODBC Reference section for your database or Appendix A, “ODBC Configuration on
UNIX Systems”for details.

USER_ID

Set this keyword equal to a string containing the user login name or ID used to log
into the datasource.

PASSWORD

Set this keyword equal to a string containing the password corresponding to the user
ID.
IDLdbDatabase::Connect DataMiner Guide

[/Dest /IDLDBDATABASE::CONNECT /DEST

Chapter 3: IDL DataMiner API 55
Version History

5.0 Introduced
DataMiner Guide IDLdbDatabase::Connect

56 Chapter 3: IDL DataMiner API
IDLdbDatabase::ExecuteSQL

Use the IDLdbDatabase::ExecuteSQL procedure method to execute an SQL
statement. No results are expected from this statement; any that are received are
discarded. You can use this method to perform actions such as creating or deleting a
table. To use this method, the object must already be connected to a datasource.

Note
See “ODBC SQL Syntax Notes” on page 32for information on some common
questions about ODBC SQL syntax.

Syntax

DBobj -> [IDLdbDatabase::]ExecuteSQL, strSQL

Arguments

Note
Do not use the following words in the argument string: DOUBLE, FLOAT, and
TEMP. These words are reserved in SQL.

strSQL

A string that contains a valid SQL statement. This statement is executed in the data
source referenced by the database object.

If strSQL is a command that produces a return value, that value will be ignored. If
you want to capture the return of an SQL statement (or Stored Procedure) that
provides a return value, see “SQL” on page 65.

Note
Always enclose the string value in double quotes.

Keywords

None.
IDLdbDatabase::ExecuteSQL DataMiner Guide

[/Dest /IDLDBDATABASE::EXECUTESQL /DEST

Chapter 3: IDL DataMiner API 57
Version History

5.0 Introduced
DataMiner Guide IDLdbDatabase::ExecuteSQL

58 Chapter 3: IDL DataMiner API
IDLdbDatabase::GetDatasources

The IDLdbDatabase::GetDatasources function method returns an array of available
datasources. You do not need to make a connection before calling this method.

Note
Not all drivers support the ability to return a list of available data sources.

Syntax

Datasources = DBobj -> [IDLdbDatabase::]GetDatasources()

Return Value

The GetDatasources method returns an array of IDL structures with the following
two fields:

• DATASOURCE: The name of the database driver

• DESCRIPTION: A description of the driver.

Arguments

None.

Keywords

None.

Version History

5.0 Introduced
IDLdbDatabase::GetDatasources DataMiner Guide

[/Dest /IDLDBDATABASE::GETDATASOURCES /DEST

Chapter 3: IDL DataMiner API 59
IDLdbDatabase::GetProperty

Use the IDLdbDatabase::GetProperty procedure method to retrieve properties of the
database object. You must have made a connection to a database before using this
method.

Syntax

DBobj -> [IDLdbDatabase::]GetProperty [, PROPERTY=variable]

Arguments

None.

Keywords

Any property listed under “IDLdbDatabase Properties” on page 48 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Version History

5.0 Introduced
DataMiner Guide IDLdbDatabase::GetProperty

[/Dest /IDLDBDATABASE::GETPROPERTY /DEST

60 Chapter 3: IDL DataMiner API
IDLdbDatabase::GetTables

The IDLdbDatabase::GetTables function method returns a list of available tables in
the datasource. A connection is required before this method is called. This method is
not supported for all drivers.

This function is not available in all ODBC drivers. Use the CAN_GET_TABLES
keyword to the GetProperty method to determine whether this feature is available.

Syntax

Tables = DBobj -> [IDLdbDatabase::]GetTables()

Return Value

The GetTables method returns an array of IDL structures with the following fields:

• QUALIFIER: The table qualifier.

• OWNER: The owner of the table.

• NAME: The name of the table

• TYPE: The type of the table.

Arguments

 None.

Keywords

None.

Version History

5.0 Introduced
IDLdbDatabase::GetTables DataMiner Guide

[/Dest /IDLDBDATABASE::GETTABLES /DEST

Chapter 3: IDL DataMiner API 61
IDLdbDatabase::Init

The IDLdbDatabase::Init function method initializes a database object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: if you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLdbDatabase' [, PROPERTY=value])

or

Result = Obj->[IDLdbDatabase::]Init([, PROPERTY=value]) (In a lifecycle
method only.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

 None.

Keywords

Any property listed under “IDLdbDatabase Properties” on page 48 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.
DataMiner Guide IDLdbDatabase::Init

62 Chapter 3: IDL DataMiner API
Version History

5.0 Introduced
IDLdbDatabase::Init DataMiner Guide

Chapter 3: IDL DataMiner API 63
IDLdbDatabase::SetProperty

Use the IDLdbDatabase::SetProperty procedure method to set properties of the
database object.

Note
You must connect to the data source associated with the database object (using the
IDLdbDatabase::Connect method) before attempting to set properties on the
database object.

Syntax

DBobj -> [IDLdbDatabase::]SetProperty [, PROPERTY=value]

Arguments

None.

Keywords

Any property listed under “IDLdbDatabase Properties” on page 48 that contains the
word “Yes” in the “Set” column of the properties table can be set using this method.
To set the value of a property, specify the property name as a keyword set equal to the
appropriate property value.

Version History

5.0 Introduced
DataMiner Guide IDLdbDatabase::SetProperty

[/Dest /IDLDBDATABASE::SETPROPERTY /DEST

64 Chapter 3: IDL DataMiner API
IDLdbRecordset

The IDLdbRecordset object contains a database table or the results from an SQL
query.

Superclasses

None

Creation

To create a recordset object, a valid database object is required. Use the following
IDL command to create a new recordset object:

RSObj = OBJ_NEW('IDLdbRecordset', DBobj, [, N_BUFFERS=integer]
[, SQL=string | TABLE=string])

where DBobj is the object reference of the database object and either the SQL or the
TABLE property must be specified.

N_BUFFERS

Set this keyword equal to the number of records to store per database read request in
a rapid access memory location. When a IDLdbRecordset object requests records
from the datasource it is associated with, the desired records are retrieved from the
datasource and cached in the recordset object. The operation to request and transfer
the desired records from the datasource can be fairly time consuming, which can
impact performance of record access when a large number of records are being
requested. Setting this to the optimal number of records can greatly increase
IDLdbRecordset::MoveCursor performance and, thus, the overall speed of IDL
DataMiner. A higher value is particularly useful, if you are looping through large
IDLdbRecordset's with MoveCursor(/NEXT) or MoveCursor(/PREVIOUS) calls. A
relatively low value might be called for, if your incremental Dataminer calls are
searching for records that are widely dispersed in the target table. The default value is
10 records.

Transferring records from the datasource to the recordset object in a block can
drastically increase performance, especially when accessing records in a sequential
order. The N_BUFFERS keyword gives the user the ability to modify the size of the
block of records the dataminer will transfer from the data sources when a request is
being made by the recordset. Increasing the block/buffer size can dramatically
increase record access time. You may need to experiment with different values to
find the most efficient setting for your application.
IDLdbRecordset DataMiner Guide

[/Dest /IDLDBRECORDSET /DEST

Chapter 3: IDL DataMiner API 65
SQL

A string that contains a valid SQL statement that selects records from the database.
This SQL statement can be a Stored Procedure call that provides a return value.

Note
If the SQL keyword uses SQL statement syntax unrecognized by the DBMS or the
ODBC driver, IDL throws an error that stops execution of the program if not caught
and handled by the Dataminer programmer.

Note
If the SQL keyword uses an SQL statement that has acceptable syntax, but returns
NULL data (because it has filtered out everything in the table it is referencing), then
NO ERROR is thrown. The object returned is a valid IDL object. To determine the
object returned was actually an “empty” recordset, you must test the recordset with
a subsequent call of:

result = RSObj->MoveCursor(/FIRST)

if result eq 0 (or result ne 1), then the recordset returned by OBJ_NEW
was an empty (or NULL) recordset.

TABLE

A string that contains the name of a table in the database. This table must be
contained in the database referred to by RSObj.

Note
If the TABLE keyword references a table that does not exist, then IDL throws an
error that stops execution of the program if not caught and handled by the
Dataminer programmer.

Properties

Objects of this class have the following properties. See “IDLdbRecordset Properties”
on page 67 for details on individual properties.

• CAN_MOVE_ABSOLUTE

• CAN_MOVE_FIRST

• CAN_MOVE_LAST
DataMiner Guide IDLdbRecordset

66 Chapter 3: IDL DataMiner API
• CAN_MOVE_NEXT

• CAN_MOVE_PRIOR

• CAN_MOVE_RELATIVE

• FIELD_INFO

• GET_DATABASE

• IS_READONLY

• N_BUFFERS

• RECORDSET_SOURCE

Methods

• “IDLdbRecordset::AddRecord” on page 71

• “IDLdbRecordset::Cleanup” on page 72

• “IDLdbRecordset::CurrentRecord” on page 73

• “IDLdbRecordset::DeleteRecord” on page 74

• “IDLdbRecordset::GetField” on page 75

• “IDLdbRecordset::GetProperty” on page 76

• “IDLdbRecordset::GetRecord” on page 77

• “IDLdbRecordset::Init” on page 79

• “IDLdbRecordset::MoveCursor” on page 81

• “IDLdbRecordset::NFields” on page 83

• “IDLdbRecordset::SetField” on page 84

Version History

5.0 Introduced
IDLdbRecordset DataMiner Guide

Chapter 3: IDL DataMiner API 67
IDLdbRecordset Properties

IDLdbRecordset objects have the following properties in addition to properties
inherited from any superclasses. Properties with the word “Yes” in the “Get” column
of the property table can be retrieved via IDLdbRecordset::GetProperty. There are no
Init or SetProperty methods for the IDLdbRecordset object.

Note
For a discussion of the property description tables shown below, see “About Object
Property Descriptions” (Chapter 28, IDL Reference Guide).

CAN_MOVE_ABSOLUTE

If True, the cursor for the recordset can move to an absolute record number.

CAN_MOVE_FIRST

If True, the cursor for the recordset can move to the first record.

CAN_MOVE_LAST

If True, the cursor for the recordset can move to the last record.

Property Type Boolean

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Boolean

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Boolean

Name String not displayed

Get: Yes Set: No Init: No Registered: No
DataMiner Guide IDLdbRecordset Properties

[/Dest /IDLDBRECORDSETPROPERTIES /DEST

68 Chapter 3: IDL DataMiner API
CAN_MOVE_NEXT

If True, the cursor for the recordset can move to the next record.

CAN_MOVE_PRIOR

If True, the cursor for the recordset can move to the previous record.

CAN_MOVE_RELATIVE

If True, the cursor for the recordset can move to a record number relative to the
current record number.

FIELD_INFO

An array of field informational structures, one for each field in the result set. Field
information is only available if the current recordset was generated from a table (that
is, if the TABLE property was set when creating the recordset object). Information
structures have the following fields (see the ODBC Manual for more information):

• TABLE_QUALIFIER: The table qualifier.

• TABLE_OWNER: The name of the table owner.

• TABLE_NAME: The name of the table.

• FIELD_NAME: The name of the field.

• TYPE_NAME: The datasource type name.

Property Type Boolean

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Boolean

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Boolean

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLdbRecordset Properties DataMiner Guide

Chapter 3: IDL DataMiner API 69
• PRECISION: Precision of the field.

• LENGTH: Length in bytes of the data.

• SCALE: The scale of the field.

• IS_NULLABLE: The field can contain null values.

• IS_AUTOINCREMENT: The field is an autoincrement field.

• IS_CASE_SENSITIVE: The value of the field is case sensitive.

• IS_UPDATABLE: The field can be updated.

• IDL_TYPE: The IDL type to which the field is mapped.

If a field is returned empty, this indicates that the driver doesn’t support the query for
that particular information.

GET_DATABASE

An object reference to the database object used when the current recordset object was
created.

IS_READONLY

If True, the table is read-only.

Property Type Array of structures

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Object reference

Name String not displayed

Get: Yes Set: No Init: No Registered: No

Property Type Boolean

Name String not displayed

Get: Yes Set: No Init: No Registered: No
DataMiner Guide IDLdbRecordset Properties

70 Chapter 3: IDL DataMiner API
N_BUFFERS

The number of buffers allocated for the recordset.

RECORDSET_SOURCE

A string containing either the table name or SQL statement used to create the
recordset.

Property Type Integer

Name String not displayed

Get: Yes Set: No Init: Yes Registered: No

Property Type String

Name String not displayed

Get: Yes Set: No Init: No Registered: No
IDLdbRecordset Properties DataMiner Guide

Chapter 3: IDL DataMiner API 71
IDLdbRecordset::AddRecord

Use the IDLdbRecordset::AddRecord procedure method to add a record to a
recordset. If you don’t have permission to modify the recordset, an error is returned.
The location in the recordset of the new record is dependent on the ODBC Driver, but
in most cases it is added to the end of the recordset.

Syntax

RSobj -> [IDLdbRecordset::]AddRecord[, field1[, field2[, ...[, fieldn]]]]
[, SET_AUTOINCREMENT=integer]

Arguments

Any arguments passed to this routine are used to initialize the new record. If these
initialization parameters are not provided, the field is initialized to null. If the field
cannot be set to null, it is initialized to 0.

Keywords

SET_AUTOINCREMENT

Normally when adding a record to the recordset, the DataMiner skips setting the
values on autoincrement fields. By setting this keyword, the DataMiner will attempt
to set the value of the autoincrement field with the value provided. Note that the
results from setting an autoincrement field is datasource dependent and might result
in an error.

Note
When using the cursor library, adding a new record to a table that only contains a
single autoincrement field can result in an error. To add a record, either set the
SET_AUTOINCREMENT keyword, or do not use an autoincrement field.

Version History

5.0 Introduced
DataMiner Guide IDLdbRecordset::AddRecord

[/Dest /IDLDBRECORDSET::ADDRECORD /DEST

72 Chapter 3: IDL DataMiner API
IDLdbRecordset::Cleanup

The IDLdbRecordset::Cleanup procedure method performs all cleanup on the object.

Note
Cleanup methods are special lifecycle methods, and as such cannot be called outside
the context of object creation and destruction. This means that in most cases, you
cannot call the Cleanup method directly. There is one exception to this rule: if you
write your own subclass of this class, you can call the Cleanup method from within
the Init or Cleanup method of the subclass.

Syntax

OBJ_DESTROY, Obj

or

Obj->[IDLdbRecordset::]Cleanup (In a lifecycle method only.)

Arguments

None

Keywords

None

Version History

5.0 Introduced
IDLdbRecordset::Cleanup DataMiner Guide

Chapter 3: IDL DataMiner API 73
IDLdbRecordset::CurrentRecord

The IDLdbRecordset::CurrentRecord function method requests the current record
number in a recordset. This method is driver-dependent. If the record number of the
current record cannot be determined by the ODBC driver, this function returns a
negative number.

Note
Because this function is driver-dependent, moving the cursor to the last record in a
recordset will not necessarily allow you to determine the number of records in the
recordset.

Syntax

number = RSobj -> [IDLdbRecordset::]CurrentRecord()

Arguments

None.

Keywords

None.

Version History

5.0 Introduced
DataMiner Guide IDLdbRecordset::CurrentRecord

[/Dest /IDLDBRECORDSET::CURRENTRECORD /DEST

74 Chapter 3: IDL DataMiner API
IDLdbRecordset::DeleteRecord

Use the IDLdbRecordset::DeleteRecord procedure method to delete the current
record from a recordset. Any attempt to access this record after it has been deleted
can result in an error. This method will fail if the SQL driver doesn’t support
positioned deletions to the recordset.

Syntax

RSobj -> [IDLdbRecordset::]DeleteRecord

Arguments

 None.

Keywords

None.

Version History

5.0 Introduced
IDLdbRecordset::DeleteRecord DataMiner Guide

[/Dest /IDLDBRECORDSET::DELETERECORD /DEST

Chapter 3: IDL DataMiner API 75
IDLdbRecordset::GetField

Use the IDLdbRecordset::GetField function method to get the value of a field from
the current record in the recordset.

Syntax

value = RSobj -> [IDLdbRecordset::]GetField(iFieldNumber [, IS_NULL=variable]
[, NULL_VALUE=variable])

Return Value

Returns the specified field value or if the value of the field is NULL (as defined by
SQL) a null value (zero or an empty string) is returned.

 Arguments

iFieldNumber

The number of the field for which the value will be returned. Field numbers have a
range of 0 <= n < number of fields.

Keywords

IS_NULL

Set this keyword equal to a named variable that will contain 1 (one) if the ODBC
system returns a NULL value, or 0 (zero) if the value is non-NULL.

NULL_VALUE

Set this keyword equal to the value that should be returned by the GetField method if
the value of the requested field is considered to be NULL by the ODBC system.

Version History

5.0 Introduced
DataMiner Guide IDLdbRecordset::GetField

[/Dest /IDLDBRECORDSET::GETFIELD /DEST

76 Chapter 3: IDL DataMiner API
IDLdbRecordset::GetProperty

Use the IDLdbRecordset::GetProperty procedure method to get properties of the
recordset.

Syntax

RSobj -> [IDLdbRecordset::]GetProperty [, PROPERTY=variable]

Arguments

None.

Keywords

Any property listed under “IDLdbRecordset Properties” on page 67 that contains the
word “Yes” in the “Get” column of the properties table can be retrieved using this
method. To retrieve the value of a property, specify the property name as a keyword
set equal to a named variable that will contain the value of the property.

Version History

5.0 Introduced
IDLdbRecordset::GetProperty DataMiner Guide

[/Dest /IDLDBRECORDSET::GETPROPERTY /DEST

Chapter 3: IDL DataMiner API 77
IDLdbRecordset::GetRecord

Use the IDLdbRecordset::GetRecord function method to retrieve the value of the
current record in an IDL anonymous structure. The field names of the structure are
the field names of the recordset.

Note
Any blob data is placed in an IDL pointer and as such must be freed using the IDL
PTR_FREE or HEAP_FREE routine.

Syntax

Result = RSobj -> [IDLdbRecordset::]GetRecord()

Return Value

Returns the value of the current record in an IDL anonymous structure.

Arguments

None.

Keywords

None.

Examples

The following code fragment creates a database object and connects to the database,
creates a recordset object, then moves to the first record in the recordset, retrieves the
value of the record, and uses the IDL HELP procedure to display information on the
record.

oDB = OBJ_NEW('IDLdbDatabase')
status = DIALOG_DBCONNECT(oDB)
oRS = OBJ_NEW('IDLdbRecordset', oDB, TABLE='table')
IF(oRS->MoveCursor(/FIRST) EQ 1)THEN BEGIN

record = oRS->GetRecord()
HELP, record, /STRUCTURE

ENDIF
DataMiner Guide IDLdbRecordset::GetRecord

[/Dest /IDLDBRECORDSET::GETRECORD /DEST

78 Chapter 3: IDL DataMiner API
Version History

5.0 Introduced
IDLdbRecordset::GetRecord DataMiner Guide

Chapter 3: IDL DataMiner API 79
IDLdbRecordset::Init

The IDLdbRecordset::Init function method initializes a database object.

Note
Init methods are special lifecycle methods, and as such cannot be called outside the
context of object creation. This means that in most cases, you cannot call the Init
method directly. There is one exception to this rule: if you write your own subclass
of this class, you can call the Init method from within the Init method of the
subclass.

Syntax

Obj = OBJ_NEW('IDLdbRecordset' [, PROPERTY=value])

or

Result = Obj->[IDLdbRecordset::]Init([, PROPERTY=value]) (In a lifecycle
method only.)

Return Value

When this method is called indirectly, as part of the call to the OBJ_NEW function,
the return value is an object reference to the newly-created object.

When called directly within a subclass Init method, the return value is 1 if
initialization was successful, or zero otherwise.

Arguments

 None.

Keywords

Any property listed under “IDLdbRecordset Properties” on page 67 that contains the
word “Yes” in the “Init” column of the properties table can be initialized during
object creation using this method. To initialize the value of a property, specify the
property name as a keyword set equal to the appropriate property value.
DataMiner Guide IDLdbRecordset::Init

80 Chapter 3: IDL DataMiner API
Version History

5.0 Introduced
IDLdbRecordset::Init DataMiner Guide

Chapter 3: IDL DataMiner API 81
IDLdbRecordset::MoveCursor

Use the IDLdbRecordset::MoveCursor function method to move the cursor in a given
recordset.

Syntax

Result = RSobj -> [IDLdbRecordset::]MoveCursor([, ABSOLUTE=integer]
[, /FIRST] [, /LAST] [, /NEXT] [, /PRIOR] [, RELATIVE=integer])

Return Value

The function returns true (1) if the move operation was successful, or false (0)
otherwise.

Arguments

None.

Keywords

ABSOLUTE

Set this keyword equal to the record number that the cursor should be moved to.

FIRST

Set this keyword to move the cursor to the first record in the recordset.

LAST

Set this keyword to move the cursor to the last record in the recordset.

NEXT

Set this keyword to move the cursor to the next record in the recordset.

PRIOR

Set this keyword to move the cursor to the previous record in the recordset.
DataMiner Guide IDLdbRecordset::MoveCursor

[/Dest /IDLDBRECORDSET::MOVECURSOR /DEST

82 Chapter 3: IDL DataMiner API
RELATIVE

Set this keyword equal to the relative number of records that the cursor should be
moved from its current position.

Version History

5.0 Introduced
IDLdbRecordset::MoveCursor DataMiner Guide

Chapter 3: IDL DataMiner API 83
IDLdbRecordset::NFields

The IDLdbRecordset::NFields function method returns the number of fields in the
recordset.

Syntax

status = RSobj -> [IDLdbRecordset::]NFields()

Return Value

Returns the number of fields.

Arguments

None.

Keywords

None.

Version History

5.0 Introduced
DataMiner Guide IDLdbRecordset::NFields

[/Dest /IDLDBRECORDSET::NFIELDS /DEST

84 Chapter 3: IDL DataMiner API
IDLdbRecordset::SetField

Use the IDLdbRecordset::SetField procedure method to set the value of a field in the
current record of a recordset.

Syntax

RSobj -> [IDLdbRecordset::]SetField, iFieldNumber, Value [, /NULL]

Arguments

iFieldNumber

The number of the field whose value is returned. Field numbers have a range of 0 <=
n < number of fields.

Value

The value to which the field should be set. If the provided value is not of the correct
type, it is converted.

Keywords

NULL

Set this keyword to set the value of the field to NULL. Null is a special value used in
database systems to indicated that a specific field does not contain a valid value.

Version History

5.0 Introduced
IDLdbRecordset::SetField DataMiner Guide

[/Dest /IDLDBRECORDSET::SETFIELD /DEST

Appendix A

ODBC Configuration on
UNIX Systems
The following topics are discussed in this chapter:
Overview of ODBC Configuration 86
ODBC Initialization File Format 88

ODBC Initialization File Example 91
DataMiner Guide 85

86 Appendix A: ODBC Configuration on UNIX Systems
Overview of ODBC Configuration

The ODBC initialization file is used by the ODBC Driver Manager and ODBC
drivers. Although ODBC initialization information exists on both Windows and
UNIX systems, on Windows systems the information resides in the Registry, and all
changes are made using the Windows ODBC Administrator (launched by clicking on
the ODBC Data Sources icon in the Windows Control Panel) as described in the
Connect ODBC Reference.

On UNIX systems, the ODBC initialization file is a text file that must be modified
manually to reflect the data sources available in your environment. During the IDL
installation process, a template initialization file named odbc.ini is installed in the
IDL_DIR/resource/dm/os/ directory, where IDL_DIR is the root directory of the
IDL distribution and os is the directory named after your particular operating system.
This file contains information about the ODBC drivers installed along with the
DataMiner.

You must modify the ODBC initialization file reflect your system’s data source
configuration, and you must make the file available to all IDL DataMiner users on the
system. Do the following:

1. Create a backup copy of the template
IDL_DIR/resource/dm/os/odbc.ini file named odbc.ini.orig.

2. Modify the template odbc.ini file to reflect your system’s data source
configuration. The format of the initialization file is described in “ODBC
Initialization File Format” on page 88. See the Connect ODBC Reference for
information on the specific ODBC drivers used at your site.

3. Make the initialization file available to IDL DataMiner users. You can do this
in either of the following ways:

• Create an environment variable named ODBCINI that contains the path to
the initialization file in each IDL DataMiner user’s environment. This
method is useful if every IDL DataMiner user uses the same datasource
configuration.

• Copy the modified odbc.ini file to each IDL DataMiner user’s home
directory, using .odbc.ini as the filename (note the initial dot). This
method is useful if different IDL DataMiner users use different datasource
configurations.
Overview of ODBC Configuration DataMiner Guide

Appendix A: ODBC Configuration on UNIX Systems 87
Note
When the IDL DataMiner starts, it looks first for the ODBCINI environment
variable. If the variable exists, the DataMiner will use the file it refers to and ignore
any .odbc.ini file in the user’s $HOME directory.

About the Default ODBC Configuration

The default IDL_DIR/resource/dm/os/odbc.ini file contains information
about the ODBC drivers installed on your system by IDL, but nothing about your
specific data sources. At the very least, you will need to add the data source names to
the ODBC initialization file; depending on your specific installation, you may also
need to add details such as the database host name, database instance name. You
might also wish to make database access more convenient by specifying login or
password information.

Changing the ODBC Configuration

If you change the values in the ODBC initialization file while the IDL DataMiner is
in use, you must destroy any existing database object and reconnect before the
changes will be apparent. See “Destroying Database Objects” on page 42 for details
on destroying a database object.
DataMiner Guide Overview of ODBC Configuration

88 Appendix A: ODBC Configuration on UNIX Systems
ODBC Initialization File Format

The ODBC initialization file is made up of the following sections:

• ODBC Data Sources. This section lists the name of each data source and
describes its associated driver.

• Data Source Specification. For each data source listed in the ODBC Data
Sources section, there is a section that contains additional information about
that data source.

• Default Data Source Specification. This section is optional and specifies the
default data source to use when no data source is specified.

• ODBC Options. This section specifies the ODBC root directory and the
ODBC options that may be enabled or disabled.

ODBC Data Sources

Each entry in the ODBC Data Sources section lists a data source and a description of
the driver it uses. Entries in this section have the following format:

data_source_name = driver_description

The data_source_name identifies the data source to which the driver connects.
You choose this name. This field is required.

The driver_description describes the driver to which the data source connects.
This field is optional.

For example, to define an Agencies data source that uses the SYBASE SQL
Server 10 driver, the ODBC initialization file entry would look like the following:

[ODBC Data Sources]
Agencies=Sybase SQL Server 10

Data Source Specification

Each data source listed in the ODBC Data Sources section has its own data source
specification section. This section has the following format:

[Data_source_name]
Driver=path_specification
Attribute=keyword_value

The data_source_name is the name defined in the ODBC Data Sources section of
the ODBC initialization file.
ODBC Initialization File Format DataMiner Guide

Appendix A: ODBC Configuration on UNIX Systems 89
The path_specification is the full path to the driver shared library.

Each Attribute and keyword_value pair specifies the value of a driver-specific
keyword. Each driver has its own set of keywords. For driver-specific keywords and
attributes, refer to the ODBC DriverSet Reference chapter. There can be any number
of Attribute/keyword pairs included in the Data Source Specification.

For example, the data source called Agencies connects to a Sybase SQL Server 10
driver for UNIX called dmsyb13.so. The database that Agencies accesses is also
called agencies and it resides on the SYBASE10 server. The data source specification
entry for the Agencies data source would look like the following:

[Agencies]
Driver=IDL_DIR/bin/bin.platform/dm/drivers/dmsyb13.so
Server=SYBASE10
Database=agencies
UID=marvin

where IDL_DIR is the root directory of the IDL distribution and platform is the
platform-specific bin directory, for example solaris2.sparc.

In this example, the driver-specific keywords for the Sybase driver are Server,
Database, and UID.

Default Data Source Specification

This section is optional. The Default Data Source specification contains information
about the default data source. This data source is called Default and has the same
format as any other data source specification section. However, the Default data
source is not listed in the ODBC Data Sources section.

The following example shows a Default data source specification entry for an
Oracle7 database.

[Default]
Driver=IDL_DIR/bin/bin.platform/dm/drivers/dmor713.so
Server=t:mickey:customers
UID=marvin

where IDL_DIR is the root directory of the IDL distribution and platform is the
platform-specific bin directory, for example solaris2.sparc.

In this example, the driver-specific keywords for the Oracle7 driver are Server and
UID. The Server keyword identifies the SQL*Net connect string for the ORACLE7
server called customers.
DataMiner Guide ODBC Initialization File Format

90 Appendix A: ODBC Configuration on UNIX Systems
ODBC Options

The ODBC Options section ([ODBC]) specifies the ODBC root directory and
indicates whether tracing is enabled or disabled. With tracing, all ODBC function
calls made from an application can be logged to the specified trace file.

Warning
This section of the ODBC initialization file is recommended so that the Driver
Manager can find the message files. The Driver Manager also uses this section to
load the Cursor Library and the Connection Dialog Library. At a minimum, the
[ODBC] section must contain the InstallDir keyword with the value set to the path
in which the DriverSet is installed.

This section has the following format:

InstallDir=odbc_path
Trace= 1 or 0
TraceFile=log_path
TraceDll=odbc_path/odbctrac.so

The odbc_path is the full path to the ODBC root directory.

If the TRACE keyword is set to 0, tracing is disabled. If the TRACE keyword is set to
1, tracing is enabled.

The log_path is the full path to the specified trace file that is logging the ODBC
function calls. If a trace file is not specified and tracing is enabled, logging
information is written to the sql.log file located in your current directory.

The TraceDll keyword indicates the shared library that contains the ODBC tracking
system.

[ODBC]
InstallDir=IDL_DIR/bin/bin.platform/dm
Trace=1
TraceFile=IDL_DIR/bin/bin.platform/dm/drivers/trace.log
TraceDll=IDL_DIR/bin/bin.platform/dm/lib/odbctrac.so

where IDL_DIR is the root directory of the IDL distribution and platform is the
platform-specific bin directory, for example solaris2.sparc.
ODBC Initialization File Format DataMiner Guide

Appendix A: ODBC Configuration on UNIX Systems 91
ODBC Initialization File Example

The following example shows a UNIX ODBC initialization file.

[ODBC Data Sources]
Informix9=INTERSOLV 3.11 Informix 9 Driver
Text=INTERSOLV 3.11 Text Driver

[Text]
Driver=IDL_DIR/bin/bin.platform/dm/lib/dmtxt13.so
Description=Text driver
Database=/home/kirk/dmtest
AllowUpdateAndDelete=1

[Informix9]
Driver=IDL_DIR/bin/bin.platform/dm/lib/dminf913.so
Description=Informix9
Database=odbc
HostName=informixhost
LogonID=odbc01
Password=odbc01

[ODBC]
InstallDir=IDL_DIR/bin/bin.platform/dm
Trace=1
TraceFile=IDL_DIR/bin/bin.platform/dm/drivers/trace.log
TraceDll=IDL_DIR/bin/bin.platform/dm/lib/odbctrac.so

where IDL_DIR is the root directory of the IDL distribution and platform is the
platform-specific bin directory, for example solaris2.sparc.
DataMiner Guide ODBC Initialization File Example

92 Appendix A: ODBC Configuration on UNIX Systems
ODBC Initialization File Example DataMiner Guide

Index

Symbols
\ (backslash character), 42

A
accessing

data in a database, 8
databases using IDL objects, 20
external databases, 16

Add Data Source dialog, 24
arguments

positional parameters, 41

B
backslash character

in DataMiner, 42

C
calling sequence. See syntax
conformance

API levels, 14
Core Level API, 14
Level 1 API, 14
Level 2 API, 14
ODBC standards, 14
SQL levels, 14

conventions
terminology, 13

converting data types, 33
copyrights, 2
Core Level API conformance, 14
DataMiner Guide 93

94
D
data

retrieving from a table, 26
Data Manipulation Language, 15
data source, 9
data types

converting, 33
database

availability
DB_Exists function, 21
finding a specific database, 22
GetDatasources method, 22

connecting, 23, 46
creating an object, 22

database application, 9
database management systems

data source, 9
ODBC access, 8

DataDirect. See ODBC drivers
DataMiner API

conformance standard, 14
functions, 14

date format, 32
DB_Exists function, 21, 45
DBMS, 8
default data source specification, 89
DIALOG_DBConnect function, 23, 43
Driver Manager

DriverSet component, 9
ODBC architecture, 9

drivers, 9
DriverSet components, 9

E
error messages

ODBC formats, 36
standard, 36
verbose, 36

export restrictions, 2

F
files

sql.log, 90
tracing, 90

formats
date, 32
time, 32
timestamp, 32

functions
data conversion, 33
scalar, 32

I
IDL

DataMiner, 8
IDLdbDatabase

class, 46
Connect method, 54
ExecuteSQL method, 56
ExecuteSQL method reserved words, 32
GetDatasources method, 58
GetProperty method, 59
GetTables method, 60
methods

Cleanup, 53
Init, 61

properties, 48
SetProperty method, 63

IDLdbRecordset
AddRecord method, 71
class, 64
CurrentRecord method, 73
DeleteRecord method, 74
GetField method, 75
GetProperty method, 76
GetRecord Method, 77
IsReadOnly method, 81
methods

Cleanup, 72
Index DataMiner Guide

95
Init, 79
MoveCursor method, 81
NFields method, 83
properties, 67
SetField method, 84

J
joins. See syntax

K
keywords

backslash character use, 42

L
language

data manipulation language, 15
IDL in DataMiner, 8
SQL, 8
SQL syntax, 32

LAST keyword, 81
legalities, 2
Level 1 API conformance, 14
Level 2 API conformance, 14
LIKE predicate, 33

M
methods

IDLdbDatabase
Cleanup, 53
Init, 61

IDLdbRecordset
Cleanup, 72
Init, 79

O
ODBC

about, 8
API functions, 14
architecture, 9
conformance standards, 14
data source, 9
database application, 9
driver manager, 9
drivers, 9, 9
error messages, 36
initialization file

Data Source Specification, 88
Default Data Source Specification, 89
format, 88
modifying, 86
ODBC Data Sources, 88
ODBC Options, 90

outer join syntax, 33
Open Database Connectivity See ODBC

P
properties

IDLdbDatabase, 48
IDLdbRecordset, 67

R
Recordset

moving within, 28
using the cursor, 28

reserved words, 32

S
scalars

functions, 32
SQL
DataMiner Guide Index

96
core conformance level, 14
core grammar, 15
Data Sources dialog, 23
extended conformance level, 14
extended grammar, 15
LIKE predicate, 33
minimum conformance level, 14
minimum grammar, 14
syntax, 32
using procedure calls instead, 34

sql.log file, 90
Structured Query Language. See SQL
syntax

arguments, 41
outer join, 33
procedure calls, 34

T
tables

connecting, 27
finding a specific table, 26
finding available tables, 26
GetTables method, 26
retrieving data, 27
working with data, 28

terminology conventions, 13
time

format, 32
timestamp format, 32
trace file, 90
trademarks, 2
Index DataMiner Guide

	Online Manuals
	IDL Documentation
	What's New in IDL 7.1
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Application Programming
	User Interface Programming
	Image Processing in IDL
	iTool User's Guide
	iTool Programming
	Object Programming
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	IDL Connectivity Bridges
	External Development Guide
	Obsolete IDL Features

	Documentation for add-on Products
	IDL Advanced Math and Stats
	IDL Dataminer
	IDL Wavelet Toolkit
	Medical Imaging in IDL

	Search Documentation

	IDL DataMiner Guide
	Contents
	DataMiner Overview
	Introduction to IDL DataMiner and ODBC
	About This Volume
	ODBC Conformance Levels
	Network Access Requirements
	Installation on UNIX Systems

	Using the IDL DataMiner
	Components
	Using the DB_EXISTS Function
	Creating a Database Object
	Connecting to a Database
	Finding Tables
	Connecting to a Table
	Working with Table Data
	Example
	ODBC SQL Syntax Notes
	Data Type Mappings
	Error Messages

	IDL DataMiner API
	How to Use This Chapter
	DIALOG_DBCONNECT
	DB_EXISTS
	IDLdbDatabase
	IDLdbDatabase Properties
	IDLdbDatabase::Cleanup
	IDLdbDatabase::Connect
	IDLdbDatabase::ExecuteSQL
	IDLdbDatabase::GetDatasources
	IDLdbDatabase::GetProperty
	IDLdbDatabase::GetTables
	IDLdbDatabase::Init
	IDLdbDatabase::SetProperty

	IDLdbRecordset
	IDLdbRecordset Properties
	IDLdbRecordset::AddRecord
	IDLdbRecordset::Cleanup
	IDLdbRecordset::CurrentRecord
	IDLdbRecordset::DeleteRecord
	IDLdbRecordset::GetField
	IDLdbRecordset::GetProperty
	IDLdbRecordset::GetRecord
	IDLdbRecordset::Init
	IDLdbRecordset::MoveCursor
	IDLdbRecordset::NFields
	IDLdbRecordset::SetField

	ODBC Configuration on UNIX Systems
	Overview of ODBC Configuration
	ODBC Initialization File Format
	ODBC Initialization File Example

	Index

